МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕРМОБАРА И ЕГО ЭКОЛОГИЧЕСКИХ ПОСЛЕДСТВИЙ В РАЙОНЕ ВПАДЕНИЯ р. СЕЛЕНГИ В 03. БАЙКАЛ¹ Б. О. Цыденов

Национальный исследовательский Томский государственный университет, Томск

Исследования естественной конвекции в гидродинамических процессах экосистемы водоёмов, вызывают постоянно растущий научный и практический интерес. Особое внимание уделяется данной тематике в последние годы в связи с проблемой взаимодействия человечества с окружающей средой. По прогнозам директора Института водных проблем РАН Данилова–Данильяна В. И. [1] глобальный водный кризис ожидается в интервале от 2025 до 2035-2040 гг. К истощению водных ресурсов ведёт не рост расходуемой воды, а её загрязнение. Огромное количество пресной воды хранится в озерах. Только в Байкале сосредоточено около 20% мировых запасов пресной воды и более 80% запасов России. К числу явлений, которое может оказать существенное влияние на процессы распространения загрязнения в водоёме, относится термобар. Под *термобаром* понимается узкая зона в глубоком озере умеренных широт, в которой происходит погружение имеющей наибольшую плотность воды от поверхности до дна.

Физическая и математическая поставка задачи

Весной образование и развитие термобара в водоёме может существенным образом зависеть от наличия речного притока с более высокой температурой, вносящего свой вклад в гидростатическую неустойчивость водных масс. Увеличение проникающей солнечной радиации и приток тёплых речных вод приводят к тому, что прибрежные поверхностные воды озера быстрее нагреваются и достигают *температуры максимальной плотности* (**TMI**). Более теплые и наиболее плотные водные массы опускаются до дна, образуя фронтальный раздел (термобар). Слева и справа от термобара образуются две циркуляционные ячейки с зоной опускания воды. Этот фронтальный раздел препятствует горизонтальному перемешиванию вод между двумя циркуляционными ячейками и проникновению прибрежных вод в центральную часть водоёма. По мере прогрева озера термобар смещается к центру и исчезает, когда температура всей акватории становится больше ТМП.

Рисунок I – Сечение протока Средняя – Бугульдейка: а – схема поперечного разреза озера Байкал; б – рельеф дна для указанного разреза; в – расчётная область

¹ Работа выполнена при финансовой поддержке стипендии Президента РФ для молодых ученых и аспирантов (СП-71.2012.5), ФЦП «Научные и научно-педагогические кадры инновационной России на 2009–2013» (соглашение №14.В37.21.0667), Министерства образования и науки РФ (задание №8.4859.2011)

В качестве исследуемой области выбрано поперечное сечение на границе Южного и Среднего Байкала: протока Средняя (устье р. Селенги) – Бугульдейка. Данные о рельефе дна, соответствующие указанному сечению, взяты из батиметрической электронной карты озера Байкал [2] (см. рис. 1).

Натурные наблюдения показывают, что при образовании и развитии термобара основные изменения происходят в направлении от устья реки к центру озера (вдоль оси Ox на рис. 1в). При этом характеристики в направлении, перпендикулярном оси Ox (вдоль оси Oy), достаточно однородны. Поэтому можно с большой степенью обоснованности исключить из уравнений математической модели все производные по y, тем самым рассматривая явление термобара в квазидвухмерном приближении [3]. С учётом этого допущения негидростатическая модель термобара, учитывающая влияние силы Кориолиса, связанной с вращением Земли, и записанная в приближении Буссинеска имеет вид: а) *уравнения количества движения*

$$\frac{\partial u}{\partial t} + \frac{\partial u^2}{\partial x} + \frac{\partial uw}{\partial z} = -\frac{1}{\rho_0} \cdot \frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left(K_x \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial z} \left(K_z \frac{\partial u}{\partial z} \right) + 2 \cdot \Omega_z v - 2 \cdot \Omega_y w;$$

$$\frac{\partial v}{\partial t} + \frac{\partial uv}{\partial x} + \frac{\partial wv}{\partial z} = \frac{\partial}{\partial x} \left(K_x \frac{\partial v}{\partial x} \right) + \frac{\partial}{\partial z} \left(K_z \frac{\partial v}{\partial z} \right) + 2 \cdot \Omega_x w - 2 \cdot \Omega_z u;$$

$$\frac{\partial w}{\partial t} + \frac{\partial uw}{\partial x} + \frac{\partial w^2}{\partial z} = -\frac{1}{\rho_0} \cdot \frac{\partial p}{\partial z} + \frac{\partial}{\partial x} \left(K_x \frac{\partial w}{\partial x} \right) + \frac{\partial}{\partial z} \left(K_z \frac{\partial w}{\partial z} \right) - g \cdot \frac{\rho}{\rho_0} + 2 \cdot \Omega_y u - 2 \cdot \Omega_x v;$$

б) уравнение неразрывности

$$\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0;$$

в) уравнение энергии

$$\frac{\partial T}{\partial t} + \frac{\partial uT}{\partial x} + \frac{\partial wT}{\partial z} = \frac{\partial}{\partial x} \left(D_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial z} \left(D_z \frac{\partial T}{\partial z} \right) + \frac{1}{\rho_0 c_p} \frac{\partial H_{sol}}{\partial z};$$

г) уравнение баланса солёности и концентрации загрязняющих веществ в озере (Φ =S, C)

$$\frac{\partial \Phi}{\partial t} + \frac{\partial u \Phi}{\partial x} + \frac{\partial w \Phi}{\partial z} = \frac{\partial}{\partial x} \left(D_x \frac{\partial \Phi}{\partial x} \right) + \frac{\partial}{\partial z} \left(D_z \frac{\partial \Phi}{\partial z} \right),$$

где *и*, *v* – горизонтальные компоненты скорости; *w* – вертикальная компонента скорости; Ω_x , Ω_y и Ω_z – компоненты вектора угловой скорости вращения Земли; *g* – ускорение свободного падения; c_p – удельная теплоёмкость; *T* – температура; *S* – солёность; *C* – концентрация примеси; *p* – давление; ρ_0 – плотность воды при стандартном атмосферном давлении, температуре T_L и солёности S_L (T_L и S_L – характерная температура и солёность озера соответственно). Коротковолновая солнечная радиация, проникающая в воду, рассчитывается по закону Бугера–Ламберта–Бэра

$$H_{sol} = H_{Ssol,0} \left(1 - r_s \right) \exp \left(-\varepsilon_{abs} \left| z \right| \right),$$

где $r_s \approx 0.2$ – коэффициент отражения воды, $\varepsilon_{abs} \approx 0.3 \, \text{M}^{-1}$ – коэффициент поглощения солнечной радиации в воде. Приток солнечной радиации на поверхность озера $H_{Ssol,0}$ определяется следующим соотношением [4, 5]:

$$H_{Ssol,0} = \begin{cases} S_0 \cdot (a_g - a_w) \cdot \cos \zeta, \text{ если } \cos \zeta > 0; \\ 0, & \text{если } \cos \zeta \le 0, \end{cases}$$

здесь $S_0 \approx 1367 \ Bm/m^2$ — солнечная постоянная, ζ — зенитный угол Солнца, $a_g = 0.485 + 0.515 \cdot (1.014 - 0.16 / \sqrt{\cos \zeta}), a_w = 0.039 \cdot (r_w / \cos \zeta)^{0.3} (r_w - \text{содержание водяного}$ пара в атмосфере, $\kappa c/m^2$).

Для турбулентного замыкания используются двухпараметрическая *k*- ω модель турбулентности Уилкокса [6], состоящая из уравнений для кинетической энергии (*k*) и частоты турбулентных пульсаций (ω), а также алгебраические соотношения [7] для определения турбулентной диффузии [8]:

$$K_x = 2.5 M^2 / c, \ K_z = v_T + v,$$

 $D_x = K_x, \ D_z = K_z,$

где $v_T = k / \omega$ – турбулентная кинематическая вязкость; v – молекулярная кинематическая вязкость воды.

В качестве уравнения состояния $\rho = \rho(T, S, p)$ выбрано уравнение Чена–Миллеро [9], принятое UNESCO. Данное уравнение состояния связывает плотность воды с температурой, солёностью, давлением и справедливо в диапазоне $0 \le T \le 30^{\circ}C$, $0 \le S \le 0.6 \ c/\kappa c$, $0 \le p \le 180 \ fap$.

В начальный момент времени система находится в состоянии покоя и удовлетворяет заданным полям температуры и солёности

$$t = 0$$
: $u = 0$; $v = 0$; $w = 0$; $T = T_L$; $S = S_L$; $C = 0$; $k = 0$; $\omega = \omega_0$.

Граничные условия имеют следующий вид:

а) на поверхности

$$K_{z}\frac{\partial u}{\partial z} = \frac{\tau_{surf}^{u}}{\rho_{0}}; K_{z}\frac{\partial v}{\partial z} = \frac{\tau_{surf}^{v}}{\rho_{0}}; w = 0; D_{z}\frac{\partial T}{\partial z} = \frac{H_{net}}{\rho_{0} \cdot c_{p}}; \frac{\partial S}{\partial z} = 0; \frac{\partial C}{\partial z} = 0; \frac{\partial k}{\partial z} = 0; \omega = \frac{\sqrt{k}}{c_{\mu}^{0}\kappa(z+z_{0})},$$

где H_{net} – тепловой поток, состоящий из длинноволновой радиации и скрытого и чувствительного тепла [10], $\kappa = 0.41$ – константа фон Кармана, $z_o = 0.5$ – высота шероховатости. Сдвиговое напряжение ветра на поверхности озера описывается законом

$$\begin{aligned} \tau^{u}_{surf} &= c_{10} \rho_a \sqrt{v_{10}^2 + u_{10}^2} \cdot u_{10}; \\ \tau^{v}_{surf} &= c_{10} \rho_a \sqrt{v_{10}^2 + u_{10}^2} \cdot v_{10}, \end{aligned}$$

здесь ρ_a – плотность воздуха у поверхности воды; u_{10} , v_{10} – составляющие скорости ветра на высоте 10 м; $c_{10} = 1.3 \times 10^{-3}$;

б) на дне (на твёрдых границах)

$$u = 0; v = 0; w = 0; D_z \frac{\partial T}{\partial n} = \frac{H_{geo}}{\rho_0 c_p}; \frac{\partial S}{\partial n} = 0; \frac{\partial C}{\partial n} = 0; \frac{\partial k}{\partial n} = 0; \omega = \frac{\sqrt{k}}{c_{\mu}^0 \kappa (z + z_0)},$$

где H_{geo} – геотермальное тепло; *n* – направление внешней нормали к области; $z_o=0.05$; в) на границе втекания реки (на левой границе) (см. рис. 2в)

$$u = u_R; v = 0; w = 0; T = T_R; S = S_R; C = 1; k = k_R; \omega = \omega_R$$

где u_R – скорость речного притока, T_R и S_R – температура и солёность реки соответственно. г) *на открытой границе* задаются условия радиационного типа [11]

$$\frac{\partial \phi}{\partial t} + c_{\phi} \frac{\partial \phi}{\partial x} = 0 \ \left(\phi = u, v, T, S, C \right); \frac{\partial w}{\partial z} = 0; \frac{\partial k}{\partial z} = 0; \frac{\partial \omega}{\partial z} = 0,$$

здесь фазовая скорость c_{ϕ} рассчитывается из пространственных и временных тенденций внутри границ области:

$$c_{\phi} = -\frac{\partial \phi}{\partial t} \bigg/ \frac{\partial \phi}{\partial x} \,.$$

Начальное поле давления определяется из решения уравнений состояния и гидростатики с граничным условием на поверхности $p = p_a$ (p_a – атмосферное давление) методом Рунге – Кутты четвёртого порядка точности. Уравнение гидростатики выводится из уравнения движения для вертикальной компоненты скорости (при условии w=0 и отсутствии силы Кориолиса) и имеет вид:

$$\frac{\partial p}{\partial z} = -\rho g$$

Численный метод решения

Решение конвективно-диффузионных уравнений основано на методе конечных объёмов (МКО), идея которого легко поддается прямой физической интерпретации [12]. Для получения пространственной дискретизации задачи расчётная область (см. рис. 2в) разбивается на соприкасающиеся конечные объёмы так, чтобы каждая узловая точка содержалась в одном конечном объёме. Заданная сетка определяется множеством узлов и множеством значений сеточных функций. Дифференциальное уравнение интегрируется по каждому конечному объёму с использованием кусочно-гладких профилей. интерполирующих изменение сеточной функции между узлами сетки. Полученный дискретный аналог выражает интегральный закон сохранения для конечного объёма [12]. Следует заметить, что МКО занимает лидирующее положение по отношению к иным способам дискретизации уравнений гидрогазодинамики, к примеру, этот метод используется в гидродинамических пакетах FLUENT, STARCCD, CFX, CFD-ACE, FINE (NUMECA) и др. [13]. Согласно МКО скалярные величины (температура, давление, солёность) определяются в центре сеточной ячейки, в то время как компоненты вектора скорости – в средних точках на границах ячеек. В целях приближения расчётной области к прибрежному профилю озера применяется метод блокировки фиктивных областей [12]: приравниваются нулю компоненты скорости в выключенной зоне за счёт использования больших значений коэффициентов вязкости в этой зоне.

Численный алгоритм нахождения поля течения и температуры опирается на разностную схему Кранка – Николсон. Конвективные слагаемые в уравнениях аппроксимируются по противопотоковой схеме QUICK Леонарда [14].

Для согласования рассчитываемых полей скорости и давления разработана процедура SIMPLED для течений с плавучестью, представляющего собой модификацию метода SIMPLE Патанкара и Сполдинга [12]. Алгоритм SIMPLED основан на циклической последовательности операций «предположение–коррекция»:

- 1. Задание приближенного поля давления p^* , температуры T^* и солёности S^* .
- 2. Решение уравнений количества движения для получения приближенных значений компонент скорости *u** и *w** из уравнений вида (здесь и ниже используются обозначения, принятые в [12])

$$a_{e}^{u}u_{e}^{*} = \sum_{nb} a_{nb}^{u}u_{nb}^{*} + b^{u} + (p_{P}^{*} - p_{E}^{*})h_{z};$$
$$a_{n}^{w}w_{n}^{*} = \sum_{nb} a_{nb}^{w}w_{nb}^{*} + b^{w} + (p_{P}^{*} - p_{N}^{*})\Delta x - \frac{\rho_{n}^{*}g}{\rho_{0}}h_{x} \cdot h_{z}$$

где \sum_{nb} означает суммирование по всем соседним узлам конечного объёма W, E, S и N;

 h_x и h_z – шаги сетки в соответствующем направлении.

- 3. Решение уравнений энергии (для получения *T*) и солёности (для получения *S*) и расчёт $\rho' = \rho(p^*, T, S) \rho(p^*, T^*, S^*)$.
- 4. Решение уравнения для поправки давления р'из уравнений

$$a_P p'_P = a_E p'_E + a_W p'_W + a_N p'_N + a_S p'_S + b,$$

где $a_E = d_e h_z$, $a_W = d_W h_z$, $a_N = d_n h_x$, $a_S = d_s h_x$, $a_P = a_E + a_W + a_N + a_S$,
 $b = (u_W^* - u_e^*) h_z + (w_S^* - w_n^*) h_x + \frac{g}{\rho_0} (c_n \rho'_n - c_S \rho'_S) h_x.$

- 5. Расчёт р путём добавления р' к р*.
- 6. Корректировка компонент скорости и и w из формул вида

$$u_{e} = u_{e}^{*} + d_{e}(p_{P}' - p_{E}');$$

$$w_{n} = w_{n}^{*} + (p_{P}' - p_{N}')d_{n} - \frac{\rho_{n}'g}{\rho_{0}}c_{n},$$

где $d_e = \frac{h_z}{a_e^u}, \ d_n = \frac{h_x}{a_n^w}, \ c_n = \frac{h_x \cdot h_z}{a_n^w}.$

- 7. Решение уравнений энергии, солёности, количества движения для v и расчёт $\rho = \rho(p, T, S)$.
- 8. Возврат к пункту 2 и повтор расчётов до тех пор, пока не будет достигнута сходимость.

Системы сеточных уравнений на каждом шаге по времени решаются методом нижней релаксации или явным методом Н. И. Булеева [15].

Некоторые результаты расчётов

Начальное распределение температуры в озере Байкал имеет постоянное значение, равное 3°С, в то время как температура воды в р. Селенге соответствует 5°С и нагревается на 0.4°С в день. Река впадает в озеро со скоростью 0.015 м/с. Минерализация воды в озере составляет 0.096 г/кг, а в реке линейно растёт от 0.140 г/кг до 0.150 г/кг. Переменный поток тепла, поступающий на водную гладь, включает в себя длинноволновую радиацию, а также потоки скрытого и чувствительного тепла [10]. На дне задаётся геотермальное тепло $H_{geo}=0.1 \text{ Bm/m}^2$. В качестве атмосферных данных выступает информация из архива погодных условий метеостанции г. Байкальск в период с 01.05.2002 по 30.05.2002 г. (http://meteo.infospace.ru).

Вычислительная область имеет протяженность 18 км и глубину 300 м (см. рис. 2в). Открытый участок речного стока (на левой границе) составляет 15 м от поверхности озера. Расчётная область (см. рис. 2б) покрывается равномерной ортогональной сеткой с шагами $h_x = 50$ м и $h_z = 5$ м. Шаг по времени $\Delta t = 60$ с. Вычисления проводились на суперкомпьютере ТГУ «СКИФ Суberia».

Рисунок 2 – Изолинии функции T–T_{MD}(p,S) через 5, 10, 15 суток (сверху вниз)

На рис. 2 приведены изолинии функции $T-T_{MD}$ (T_{MD} – температура максимальной плотности), построенные через 5, 10, 15 суток от начала вычислительного эксперимента. Нулевая изолиния (на рис. 2 обозначена желтым цветом) соответствует температуре максимальной плотности. Видно, что поступающая в озеро речная вода, которая от озерной отличается высокой минерализацией и температурным режимом, способствует формированию термобара и его дальнейшему продвижению в центр озера. Полученные результаты согласуются с описанием натурных наблюдений.

Список литературы

- 1. Данилов–Данильян В. И. Водные ресурсы стратегический фактор долгосрочного развития экономики России // Вестник РАН. 2009. Т. 79, № 9. С. 789-798.
- 2. Батиметрическая электронная карта озера Байкал / П. П. Шерстянкин [и др.] // ДАН. 2006. Т. 408, №1. С. 102–107.
- 3. Цветова Е. А. Численная модель термобара в озере Байкал // Метеорология и гидрология. 1997. № 9. С. 58–68.
- 4. Гидротермодинамическое взаимодействие озера с атмосферой / С. С. Зилитинкевич [и др.]. Л.: Наука, 1990. 140 с.
- 5. Hurley P. The air pollution model (TAPM) Version 2. Part 1 : technical description // CSIRO Atmospheric Research technical paper. 2002. № 55.
- 6. Wilcox D. C. Reassessment of the scale-determining equation for advanced turbulence models // AIAA Journal. 1988. Vol. 26, № 11. P. 1299–1310.
- Holland P. R. Numerical modelling of the thermal bar and its ecological consequences in a river-dominated lake / P. R. Holland, A. Kay, V. Botte // J. Mar. Syst. – 2003. – Vol. 43, № 1-2. – P. 61–81.
- Цыденов Б. О. Применение k-ω модели турбулентности для исследования термобара в глубоком озере / Б. О. Цыденов, А. В. Старченко // Всеросс. конф. по математике и механике, посвящ. 135-летию ТГУ и 65-летию ММФ : сб. тезисов. Томск, 02–04 октября 2013 г. – Томск, 2013. – С. 83.
- 9. Chen C. T. Precise thermodynamic properties for natural waters covering only limnologies range / C. T. Chen, F. G. Millero // Limnol. Oceanogr. 1986. Vol. 31, № 3. P. 657–662.
- Цыденов Б. О. О параметризации тепловых потоков на поверхности воды при математическом моделировании весенне-летнего термобара в озере Байкал // Всерос. молод. конкурс научно-иссл. работ студ. и асп. в обл. физ. наук : сб. тр. / под общ. ред. В. Н. Зимин, В. Н. Наумов, А. Н. Морозов. – М. : МГТУ им. Н. Э. Баумана, 2012. – С. 234–239.
- 11. Orlanski I. A simple boundary condition for unbounded hyperbolic flows // J. Computational Phys. 1976. Vol. 21, № 3. P. 251–269.
- 12. Патанкар С. Численные методы решения задач теплообмена и динамики жидкости : пер. с англ. / С. Патанкар ; под ред. В. Д. Виоленского. М. : Энергоатомиздат, 1984. 124 с.
- Смирнов Е. М. Метод конечных объемов в приложении к задачам гидрогазодинамики и теплообмена в областях сложной геометрии / Е. М. Смирнов, Д. К. Зайцев // Научнотехнические ведомости СПбГПУ. – 2004. – №2 (36). – С. 70–81.
- Leonard B. A Stable and Accurate Convective Modeling Procedure Based on Quadratic Upstream Interpolation // Computer Methods in Applied Mechanics and Engineering. – 1979. – Vol. 19, № 1. – P. 59–98.
- Булеев Н. И. Метод неполной факторизации для решения двумерных и трехмерных разностных уравнений типа диффузии // Журн. вычисл. матем. и матем. физ. – 1970. – Т. 10, № 4. – С. 1042–1044.