On restoring the parameters of the wave equation using a known boundary condition

МАРков БоРИС АнатольевИч
Южно-Уральский государственный университет (Челябинск), Россия
e-mail: smpx1969@mail.ru
\section*{Сухарев Юрий Иванович}
Южно-Уральский государственный университет (Челябинск), Россия

We considered the problem of obtaining the unknown functions $f(x)$ and $g(x)$ from the distribution of the derivative of the coordinate on an arbitrary segment in the Cauchy problem for the hyperbolic equation:

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u(x, t)}{\partial t^{2}}=\frac{\partial^{2} u(x, t)}{\partial x^{2}}, x \in(0 ; 1), t \in(0 ; 1), \\
u(0, t)=0, t \in[0 ; 1], \quad u(1, t)=0, t \in[0 ; 1], \quad \frac{\partial u(1, t)}{=} h(t), t \in[0 ; 1], \\
u(x, 0)=f(x), x \in[0 ; 1], \quad \frac{\partial u(0, t)}{\partial t}=g(x), x \in[0 ; 1],
\end{array}\right.
$$

where the function $h(t) \in H^{3}[0 ; 1]$, and you need to find the unknown functions $f(x) \in$ $H_{0}^{4}[0 ; 1], g(x) \in H_{0}^{3}[0 ; 1]$.

The solution to the inverse problem is correct and can be found quite simply: $f(x)=\sum_{n=1}^{\infty} \frac{a_{n}}{n} \sin (\pi n x)$, displaystyleg $(x)=\sum_{n=1}^{\infty} b_{n} \sin (\pi n x)$, where a_{n}, b_{n} are the corresponding expansion coefficients of the function $h(t)$ in Fourier series:

$$
a_{n}=\frac{2}{T} \int_{0}^{T} h(t) \cos \left(\frac{\pi n t}{T}\right), \quad b_{n}=\frac{2}{T} \int_{0}^{T} \sin \left(\frac{\pi n t}{T}\right),
$$

where T is the period of the function $h(t), T \leq 1$.
This problem is used to reconstruct the pattern of electromechanical vibrations of long polymer oxyhydrate molecules from the measured electric current.

