SCT Novosibirsk , Russia 2012 June 4-8, 2012

Solitons, Collapses and Self-Similar Solutions in

Cahn-Hilliard Kind Equation

V.V. Pukhnachev

Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia

O.V. Admaev

Krasnoyarsk Institute of Railway Engineering Branch of Irkutsk State Transport University, Krasnoyarsk, Russia

O.A. Frolovskaya

Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia

Statement of the problem

- A two-dimensional a thin horizontal layer of a viscous fluid with thermal inhomogeneity in the presence of gravity force is considered.
- Liquid layer bounded by a planar solid substrate from below and by a free surface from above.

- The bottom temperature θ_0 is assumed to be constant and more that the gas temperature θ_1 .
- The interfacial tension liquid-gas interface $\sigma = \sigma_0 + \phi (\theta \theta_*)^2$ σ_0, ϕ, θ_* are positive constants.
- The characteristic disturbance amplitude of free surface u(x,y,t) is much less than the average layer thickness *h*.

In the thin layer approximation the Rayleigh-Benard problem with the condition $\theta = \theta_*$ on the free surface is investigated.

Cauchy problem

The evolution of the non-dimensional deviation of a free boundary from a horizontal equilibrium state u(x,y,t) can be described in terms of Cauchy problem solutions for the equation of Cahn-Hilliard kind

$$u_t + \Delta^2 u + \Delta (u^2 - \beta u) = 0; \quad u = u_0(x, y), \quad t = 0$$
 (1)

 $\beta = \rho g h^2 / \sigma_0$ is the Bond number

 $u_0(x, y)$ • double periodic function, or • rapidly decreasing function at $x, y \rightarrow \infty$

"Mass" conservation law
$$\iint_{R^2} u(x, y, t) dx dy = \iint_{R^2} u_0(x, y, t) dx dy = c \quad (2)$$

Global existence of periodic solution

 $\Pi = \{x, y: 0 < x < 2\pi, 0 < y < 2\pi\kappa^{-1}\}, \kappa \ge 1$

 $\varepsilon = \varepsilon(\beta, \kappa)$ is sufficient small positive number

Let $u_0 \in H_0^2(\Pi)$ and $||u_0||_{H_0^2} \leq \varepsilon$, where $H_0^2(\Pi)$ is the subspace of Sobolev space formed by periodic function.

If $\beta > -1$, Cauchy problem (1) has a unique generalized solution $u(x, y, t) \in L^2(0, \infty; H_0^2(\Pi))$

There exist constants $\gamma \in (0, 1+\beta)$ and C > 0 independente of t such that the estimate $e^{\gamma t} \| u_0 \|_{L^2} \le C\varepsilon$ is true for any fixed t > 0.

The condition of smallness $||u_0||_{H_0^2}$ is essential for the global existence of solution of problem (1). Solution having a "large" initial norm can be destroyed for a finite time.

Space-periodic solutions of Cauchy problem and rapidly decreasing solutions at infinity are studied.

Self-similar solutions of axially symmetric problem

$$u = t^{-1/2} f(\xi), \quad \xi = t^{-1/4} (x^2 + y^2)^{1/2} \quad (\beta = 0) \quad (3)$$
$$[\xi^{-1} (\xi f')']' - \frac{1}{4} \xi f + 2 f f' = 0,$$
$$|f| < \infty, \quad \xi \to 0; \quad f \to 0, \quad \xi \to \infty$$

Singular points: regular point $\xi = 0$ and irregular point $\xi = \infty$.

We seek non-trivial solutions that are defined for all $\xi > 0$, regular at $\xi \to 0$, and rapidly decreasing at $\xi \to \infty$. Such solutions form one-parameter family with the parameter *c*, where

$$c = \int_{0}^{\infty} \xi f d\xi$$

Axially symmetric self-similar solutions exist at small values of |c|, do not exist for large and positive c, $c \le c_* \simeq 0.8155$.

Fig. 1. Curve Γ is a double-valued function $\lambda = f(0)$ of the parameter *c*.

Fig. 2. $c = c_* \simeq 0.8155$; $\lambda = 0.860$

Fig. 3. c = 0; $\lambda = 2.057$

Fig. 4. c = -6; $\lambda = 5.019$

Fig. 5. c = -6; $\lambda = -1.122$

Self-similar solutions of plane problem

$$u = t^{-1/2} \varphi(\eta), \quad \eta = x t^{-1/4}$$
 (4)

8

Lyapunov functional

$$\frac{dS(u)}{dt} = \iint_{\Pi} |\nabla [\Delta u + (u - \beta/2)^2]|^2 dx dy$$
$$S(u) = \iint_{\Pi} \left(\frac{1}{3}(u - \beta/2)^3 - \frac{1}{2}|\nabla u|^2\right) dx dy$$
(5)

First variation
$$\delta S = \iint_{\Pi} (\Delta u + u^2 - \beta u) \delta u \, dx \, dy$$

Gradient form $u_t = \operatorname{grad}_{H^{-2}} S(u)$

Each stationary solution u_s of equation (1) is the extremal point for the functional S(u). Critical points of S are saddle points as a rule.

Second variation
$$\delta^2 S(u_s) = \iint_{\Pi} (-|\nabla \delta u|^2 + (2u_s - \beta)(\delta u)^2) dx dy$$

Stationary solutions

> cnoidal waves,

- > Korteweg and de Vries solitons, $u_s = 3\beta / (2\cosh^2(x\sqrt{\beta}/2))$
- > axially symmetric solitons, $u_s = g(\sqrt{x^2 + y^2})$
- > travelling waves do not exist, u = q(x ct)

Sufficient condition for stability of the stationary solution u_s

$$2u_s < 1 + \beta \tag{6}$$

Stationary solution of Eq. (1) may be found as a solution of the evolutionary problem.

Evolutionary problem 2π -periodic initial function

Evolutionary problem non-periodic initial function

$$u(x,t) \approx u^{(N)}(x,t) = \sum_{n=0}^{N} v_n(t) C_n(x), \quad v_n(0) = q_n, \quad n = 0,...,N$$
(9)

Christov's functions

$$C_{n}(x) = \sqrt{\frac{2}{\pi}} \frac{\sum_{k=1}^{n+1} (-1)^{n+k+1} {\binom{2n+1}{2k-2}} x^{2k-2}}{(x^{2}+1)^{n+1}}, \quad n = 0, 1, 2, \dots$$
(10)

Initial data
$$q_0 = 1, q_1 = -2, q_2 = 1, q_i = 0, i = 3, ..., N$$

Collapsing solutions

The behavior of Cauchy problem solutions (1) are following:

 \succ $u \rightarrow u_s$ when $t \rightarrow \infty$, where u_s is some stationary solution, or

its solution is destroyed for a finite or infinite time.

Sufficient condition of collapse existence

Proposition. Let initial function $u_0 \in H_0^2(\Pi)$ satisfied the inequality

$$\iint_{\Pi} \left(\frac{u_0^3}{3} - \frac{|\nabla u_0|^2}{2} \right) dx \, dy > \frac{6}{5} (1 + \beta^2) \iint_{\Pi} \left((-\Delta)^{-1/2} u_0 \right)^2 dx \, dy.$$
(11)

There exist such $t_* > 0$ that for solution u of Cauchy problem (1) we have $\|(-\Delta)^{-1/2}u\|_{L^2} \to \infty$ when $t \to t_* - 0$.

The inequality (11) can not be fulfilled for "small" data u_0 , and also for odd function u_0 .

Solutions having a "large" initial norm can be destroyed for a finite time.

Simple example $(\beta = 0)$

$$u_0(x) = a_1 \cos x + a_2 \cos 2x,$$

$$|a_1| > 2, \quad a_1^2 - \sqrt{a_1^4 - 16} < 2a_2 < a_1^2 + \sqrt{a_1^4 - 16}.$$

$$a_1 = 2.1, \quad a_2 = 2$$

Fig. 11.

Numerical calculations show that the solution of a non-periodic problem collapses for finite time.

Conclusions

- The sufficient instability condition of the equilibrium has been obtained in the framework of the long-wave approximation.
- The sufficient condition of the global solution existence of problem (1) and its collapse for a finite time for the periodic initial function has been formulated.
- Analytical and numerical research shows that axially symmetric selfsimilar solutions exist at small values of |c|, where c is a constant in mass conservation law (2), and they do not exist for large and positive c. For negative values of c there were found two branches of selfsimilar solutions with various qualitative behaviors. Such solutions form one-parameter family with the parameter c.
- The self-similar solutions of the plane problem satisfying the conservation law exist only for c = 0.
- Korteweg and de Vries solitons, axially symmetric solitons, cnoidal waves are stationary solutions of the problem.
- There are no nontrivial stationary solutions in the form of travelling waves.

Thank you for your attention!