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Introduction

At the last few years many optically transparent magnets with a
spiral structure have been synthesized.

The Landau-Lifshitz equations for quasi-one-dimensional spiral
with some restrictions can be reduced to sine-Gordon eguation.
Sine-Gordon equation is well-known, but usually this equation is
solved against the homogeneous background.

In our case, spiral structure represents essentially nonlinear
Inhomogeneous ground state. So far, nonlinear dynamics of
solitons and spin waves in such structures is not investigated. It is
known only most simple soliton solution, which was found by
Borisov and Ovchinnikov at 2009.




Sine-Gordon equaiton. The choice of spiral ground state
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Difficulties, inherent to Riemann’s problem

for helicoidal structure

v The Riemann’s problem is formulated on the two-shee ts
Riemann’s surface , related with spiral structure

v Because of the periodic background,  the functions of
Riemann’s problem appear to be “Bloch functions”: they
acquire additional multipliers every time, when coo rdinate
IS shifted on period.

v The formation of solitons is accompanied by the
macroscopic translations of helicoidal structure . These
translations explicitly appear in boundary conditio ns.




Advantages of “dressing” technique

v Final formulas do not contain transcendental relations and
multidimensional theta-functions (inherent to finit e-gap-
Integration technique), and are expressed in terms of well-
known Jacobi elliptic functions

v We do not use Iintegral transformations: technique o f
“dressing” is local .

v This technique describes not only solitons, but also  spi
waves at arbitrary initial distributions of magnetization In
spiral structure.

v" We can find spectral expressions of integrals of motion for
collective excitations in helicoidal structure.



“Dressing” technigue for helicoidal structure:

1. Auxiliary linear system

Equation 8;®-&.®+sin®=0 is equivalent to compactibility condition of system
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2. Solitons lead to the macroscopic shift A in boundary conditions
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(M pairs of kinks have mutually opposite topological charges)

+ arbitrary number of breathers (bound state of two kinks
with opposite topological charges) + spin waves
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3. Transition matrix and continuous spectrum

On contour y={u:Imp(u) =0y Yost functions are related by the transition matrix:
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To apply “dressing” technique, it is useful to recombine the
columns of the Yost functions into new functions w_(u) = (¥ (), w?u))
W, (u) = (WPu),w?(), which are analytical in the regions D_ and D.
accordingly.



4. The formulation of Riemann’s problem

To find two functions w,(u) and w_(u) , which are analytical in
regions D, and D_, whereas they satisfy following conjugation

condition:
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5. Solution P(z,t) of sine-Gordon
Is found from expansion:
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b(u),b*(—u*)sﬂl and a(u),a*(—u*)
have zeroes Iin their analyticity regions

Zeroes of a(u) are divided into two groups:

a) u=v, +igK'sy, -K<v <0, & =11, p=12..m == kinks
b) u=g, 4 -2iK', -K<Reu <0; s=1,2..n. =) breathers

a(U): |—|€ U(U Vo -1 K) I73£p pl—l O'(U ,US)O'(U ,US+2|K) ’73(.“3"';“3) [2K 4|K']
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Zeroes are related with the macroscopic shift A by formula:

+u)=-0N2,)  mod(2K).




Pecularities of “dressing” for solitons

1) The function ¥_(x) cannot be normalized on unit matrix.
Hence, we must use asymptotic values of ¥_(w) at z - o,

2) As the functions of Riemann’s problem are not doubly
periodic on u, instead of Welerstrass {(u)- functions, we use:

_o(u+ i) o(u- u* -2iK’) _o(u-4) {_& }
)= v ik)ou—iky P B = Gy S T WA

. oU+iK)o(u-iK") ) U+ _ o(u-p* -2iK") F{_@ }
g‘Q’(u)_la(u+,u*)a(u+,u—2iK')ex[{ /73(u+ 2 ﬂ, %(W) o(u+ u-2iK") X 2(,u+,u*)

g,,(ux2K) = g,,(u)e™*, g,(u 2K) = =g, (u)e™";
O [(U£2IK')] = g (W)e™ ", g [(u+2iK) ] = g (U™

3) ¥_(u) Is not expressed in terms of projector matrices.

4) We have constructed multisoliton solutions by recurrent way.
Multisoliton matrices Y. (») are factorized and represent a product
of one-soliton matrices.
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Translations of the walls can be determined
by magneto-optic techniques




Breathers (bound state of two kinks) in helimagnet
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Breather has a continuous spectrum of internal oscillation,

which lies low, than discrete spectrum of standing spin waves.
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Breather can be immobile. We suppose, that immobile
breather can be detected by means of microwave power
absorption on its internal oscillation frequency.




/. Spin waves (small oscillations of magnetization,

gradually spreading, because of the dispersion)

boundary conditions:
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b(u),b"(u")#0:a(u),a’(-4") have no zeroes,
W, (u) are doubly periodic ([4k,4iK']).

To avoid singularities of background, we use new functions:
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Regular Riemann’s problem
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At |b(u)|<<1 (uOy) we have found:
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General scheme of integration

1) Initial conditions for SG 9,»(t=0), 9,®(t=0) allow to construct a(u), b(u) .

2) a(u) Is factorized: |a(u) = ag,(U)ag(u)

a50(U) leads to Riemann’s problem, which gives ¥ (u.x,t) and ®®(zt).

3) W, (u) are written in the form: L (s
) W, (u) = exp 1@ q;( L2 F, (U)W (u),
W_(u) =exg - @ q:so'))as F_(u)WS (u)ag(u),

The calculation of F,(u) leads to above mentioned
reqular Riemann’s problem:
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Solution of initial boundary value problem for SG: i(D-DEN) g
F.(iK") = exr{ 3}.




8. Spectral expansions of integrals of motion for

collective excitations of spiral structure

The main problem in obtaining conservation laws
for spiral structure Is to separate the contributions from
Inhomogeneous ground state

All difficulties are overcame, if independent of ti me
function a(u)s used as generating functional for the integrals
of motion. We have found spectral expansions for
conservation laws by means of  dispersion relation on a torus
for the function Ina(u).




We define an energy of collective excitations

s difference between complete energy of system
and the energy of ground state:
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Field momentum of collective excitations:

P = _J‘fjv[pa(v)na(v) + popt(v)nopt(v)] _i£; |m(ngp) +2; Im(dn,us)j,

Spin wave momentums are distinct from quasi-
momentums of Lame function:
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The contributions of solitons and spin waves to
the conservation laws are completely separated
from each other.




Usually, the dispersion laws of spin waves are written in terms
of guasi-momentum of Lame function (left fig.) and they are
transcendental.

In terms of spin wave momentum (right fig.), the dispersion
laws of spin wave modes are algebraic.
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Conclusion

We propose analytic description of nonlinear collective excitations
in spiral structure of magnets without inversion center in the
framework of sine-Gordon model . We can find exact solutions for
solitons and spin waves _ with an arbitrary initial distribution of
magnetization in helimagnet.

We have shown, that solitons lead to macroscopic shift of spiral

structure . This shift can be detected by magneto-optics.

Breathers in spiral structure can be detected from the resonanse
microwave power absorption on the frequency of their internal
oscillations.

Spectral expansions for integrals of motion , including soliton and
spin wave contributions, are found.
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