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Introduction

At the last few years many optically transparent magnets with a 
spiral structure have been synthesized. 

The Landau-Lifshitz equations for quasi-one-dimensional spiral 
with some restrictions can be reduced to sine-Gordon equation. 
Sine-Gordon equation is well-known, but usually this equation is 
solved against the homogeneous background.

In our case, spiral structure represents essentially nonlinear 
inhomogeneous ground state. So far, nonlinear dynamics of 
solitons and spin waves in such structures is not investigated. It is 
known only most simple soliton solution, which was found by 
Borisov and Ovchinnikov at 2009.



In dimensionless variables:

Sine-Gordon equaiton. The choice of spiral ground state
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Difficulties, inherent to Riemann’s problem 
for helicoidal structure

Because of the periodic background, the functions of 
Riemann’s problem appear to be “Bloch functions”: they 
acquire additional multipliers every time, when coo rdinate
is shifted on period.

The Riemann’s problem is formulated on the two-shee ts 
Riemann’s surface , related with spiral structure .

The formation of solitons is accompanied by the 
macroscopic translations of helicoidal structure . These 
translations explicitly appear in boundary conditio ns.
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Advantages of “dressing” technique

Final formulas do not contain transcendental relations and 
multidimensional theta-functions (inherent to finit e-gap-
integration technique), and are expressed in terms of well-
known Jacobi elliptic functions .

�

� This technique describes not only solitons, but also spin 
waves at arbitrary initial distributions of magnetization in 
spiral structure.

� We can find spectral expressions of integrals of motion for 
collective excitations in helicoidal structure.

We do not use integral transformations: technique o f 
“dressing” is local .
�



“Dressing” technique for helicoidal structure: 
1. Auxiliary linear system

Equation is equivalent to compactibility condition of system

In parametrization :
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2. Solitons lead to the macroscopic shift ∆ in boundary conditions

at

+ arbitrary number of breathers (bound state of two kinks
with opposite topological charges) + spin waves
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3. Transition matrix and continuous spectrum

On contour                              Yost functions are related by the transition matrix: }0)(Im:{ == upuγ

;
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To apply “dressing” technique, it is useful to recombine the 
columns of the Yost functions into new functions

, which are analytical in the regions and  
accordingly.       
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4. The formulation of Riemann’s problem

To find two functions and , which are analytical in 
regions and      , whereas they satisfy following conjugation 
condition:
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5. Solution Φ(z,t) of sine-Gordon 
is found from expansion:
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Zeroes of          are divided into two groups:
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6. Solitons

have zeroes in their analyticity regions
and



Pecularities of “dressing” for solitons

1) The function           cannot be normalized on unit matrix. 
Hence, we must use asymptotic values of           at            .             ±∞→z

2) As the functions of Riemann’s problem are not doubly 
periodic on u , instead of Weierstrass - functions, we use:           
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3)          is not expressed in terms of projector matrices. 

4) We have constructed multisoliton solutions by recurrent way. 
Multisoliton matrices are factorized and represent a product 
of one-soliton matrices.  



Kinks
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by magneto-optic techniques



Breathers (bound state of two kinks) in helimagnet
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Breather has a continuous spectrum of internal oscillation, 
which lies low, than discrete spectrum of standing spin waves.

Breather can be immobile. We suppose, that immobile 
breather can be detected by means of microwave power 

absorption on its internal oscillation frequency.  



7. Spin waves (small oscillations of magnetization, 
gradually spreading, because of the dispersion)

)(),( 0 χϕ→Φ tz at ∞→z

are doubly periodic (           ).)(u±Ψ ]i,44[ KK ′

,
)(

1
=det),(

)(
)(

)(
4
i

exp=)(

),(=det),()()(
4
i

exp=)(

1

030

**1

030

ua
Fu

ua

u
uF

uaFuuuF

−
−

−

+++

−

−

ΨΨ





 −Φ

−ΨΨ




 −Φ

σϕ

σϕ

To avoid singularities of background, we use new functions:

have no zeroes,;

boundary conditions:



;)(
0)(

)(0
)(=)()),()((=)( 1

0

**

0 u
ub

ub
uuGuGIuFuF −

−+ Ψ







 −Ψ−
2121

~~= γγγγγ ∪∪∪∈u

Regular Riemann’s problem

.)(=])i2[(

,)(=)2(

11
***

33

σσ
σσ

uFKuF

uFKuF

±±

±±

′+

+

reductions:

normalization: ;=)i( IKF ′−±

SG-solution:
.)(

2

i
exp=)i( 30 




 −Φ′± σϕKF

.)()(),(d
i2

v.p.
=

2

)(
)( ∫ ′′′′+







 − −−
γπ

uGuFuuYuI
uG

IuF )( γ∈u

Singular integral equation for        : )(uF−

).i()(=),( KuuuuuY ′+′−−′′ ζζ

Cauchy kernel on a torus:

]i,44[ KK ′



( )(
( ) )]/),'i(dniexp)'i,()'i(Re[

]/),i(dniexp)i,()i(Re[d
4

*

*
'

'
0

kkKvtKvKvb

kkvtvvbv
K

K

−−Λ−+

+Λ≈−Φ ∫
−

χ

χ
π

ϕ

),( uχΛ - Lame function – solution of equation: Λ−=Λ+−∂ εχχ ]sn2[ 2222 kk

quasi-optical modes

quasi-acoustic modes

At                           we have found:1|<<)(| ub )( γ∈u

( ))]i()i([)i(exp

)i()i(

)i2()(

)i()i()i(

)i2()(|)i(|

2

i
=),(

3

2

2

KuKuuK

KK

uKu

KuKuKK

KKKK
u

′−+′+−+′+−×

×
′+′−

+′++
′+′−′+

′+′
Λ

ζζχχη
χσχσ

χσχσ
σσσ

σσσχ

]i,42[ KK ′(periods of Weierstrass functions:             )



General scheme of integration
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8. Spectral expansions of integrals of motion for 
collective excitations of spiral structure

The main problem in obtaining conservation laws
for spiral structure is to separate the contributions from 

inhomogeneous ground state . 

All difficulties are overcame, if independent of ti me 
function is used as generating functional for the integrals 
of motion. We have found spectral expansions for 
conservation laws by means of dispersion relation on a torus
for the function .



Spectrum and density
of quasi-optical

and quasi-acoustic 
spin wave modes 
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Contributions of
kinks and breathers 

We define an energy of collective excitations 
as difference between complete energy of system

and the energy of ground state:



Field momentum of collective excitations:
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The contributions of solitons and spin waves to 
the conservation laws are completely separated 
from each other.



Usually, the dispersion laws of spin waves are written in terms 
of quasi-momentum of Lame function (left fig.) and they are 
transcendental. 

In terms of spin wave momentum (right fig.), the dispersion 
laws of spin wave modes are algebraic.
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Conclusion

- We propose analytic description of nonlinear collective excitations 
in spiral structure of magnets without inversion center in the 
framework of sine-Gordon model . We can find exact solutions for 
solitons and spin waves with an arbitrary initial distribution of 
magnetization in helimagnet.

- We have shown, that solitons lead to macroscopic shift of spiral 
structure . This shift can be detected by magneto-optics.

- Breathers in spiral structure can be detected from the resonanse
microwave power absorption on the frequency of their internal 
oscillations. 

- Spectral expansions for integrals of motion , including soliton and 
spin wave contributions, are found.
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