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To make a decision, we must:

• find out the user’s preference, and

• help the user select an alternative which is the best – according to these
preferences.

A general way to describe user preferences is via the notion of utility (see,
e.g., [7]): we select a very bad alternative A0 and a very good alternative A1;
utility u(A) of an alternative A if then defined as the probability p for which
A is equivalent to the lottery in which we get A1 with probability p, and A0

otherwise. One can prove that utility is determined uniquely modulo linear re-
scaling (corresponding to different choices of A0 and A1), and that the utility
of a decision with probabilistic consequences is equal to the expected utility of
these consequences.

Once the utility function u(d) is elicited, we select the decision dopt with
the largest utility u(d). Interval techniques can help in finding the optimizing
decision; see, e.g., [4].

Often, we do not know the exact probability distribution, so we need to
extract, from the sample, the characteristics of a distribution which are most
appropriate for decision making. We show that, under reasonable assumptions,
we should select moments and cumulative distribution function (cdf). Based on
a finite sample, we can only find bounds on these characteristics, so we need to
deal with bounds (intervals) on moments [6] and bounds on cdf [1] (a.k.a. p-
boxes).

Once we know intervals [u(d), u(d)] of possible values of utility, which deci-
sion shall we select? We can simply select a decision d0 which may be optimal,
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i.e., for which u(d0) ≥ max
d

u(d), but there are usually many such decisions;

which of them should be select? It is reasonable to assume that this selection
should not depend on linear re-scaling of utility; under this assumption, we
get Hurwicz optimism-pessimism criterion α · u(d) + (a − α) · u(d) → max [7].
The next question is how to select α: interestingly, e.g., too optimistic values
(α > 0.5) do not lead to good decisions.

In some situations, it is difficult to elicit even interval-valued utilities. In
many such situations, there are reasonable symmetries which can be used to
make a decision; see, e.g., [5]. We show how this method works on the example
of selecting a location for a meteorological tower [3].

Finally, while optimization problems are ubiquitous, sometimes, we need to
go beyond optimization: e.g., we need to make sure that the system is control-
lable for all disturbances within a given range. In such problems, modal intervals
[2] naturally appear. In more complex situations, we need to go beyond modal
intervals, to more general Shary’s classes.
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