
JInterval Library: Principles,
Development, and Perspectives

Dmitry Nadezhin1 and Sergei Zhilin2

1 Oracle Labs, Zelenograd, Russia
2 Altai State University, 61, Lenin ave., 6560049, Barnaul, Russia

dmitry.nadezhin@oracle.com, sergei@asu.ru

Keywords: interval computations, Java, library

JInterval [1] was started in 2008 as a research project to develop a Java
library for interval computations. The library is intended mainly for developers
who create Java-based applied software. The design of the JInterval library
was guided by the following requirements ordered by descending priority:

1. The library must be clear and easy to use. No matter how wonderful
a software tool is, it will be hardly accepted by developers if it is not transparent
and easy to use.

2. The library should provide flexibility in the choice of interval arithmetic
for computations. The user must be able to choose interval arithmetic (classi-
cal, Kaucher, complex rectangular, complex circular, etc.) and to switch one
arithmetic to another if they are compatible. Syntactic differences between the
use of this or that arithmetic should be minimized.

3. The library should provide flexibility in extending its functionality. The
library must be layered functionally. Four layers should be defined: interval
arithmetic operators, elementary interval functions, interval vector and matrix
operations, and, finally, high-level interval methods, such as solvers of equa-
tions, optimization procedures, etc. Architecture of the library must allow for
extensions at every layer, starting from the bottom one.

4. The library should provide flexibility in choosing precision of interval
endpoints and associated rounding policies. The choice of interval endpoints
representation and the rounding mode could allow the user to tune accuracy
and speed of computation depending on the problem he solves.

5. The library must be portable. Cross-platform portability of the library
is one of its major strengths, being a key distinction over its closest competi-
tors. To a large extent, this requirement is ensured by the choice of the Java
technology built on the principle ”write once, run anywhere”. However, the
design must adhere to certain restrictions on practical implementation of this
requirement.

1



6. The library should provide high performance. In the era of multicore and
multiprocessor systems, a prerequisite for high performance is the ability to use
the library safely in a multithreaded environment.

Achieving the required flexibility leads to widening the scope of the library,
which results in a vast and obscure design, contrary to the simplicity require-
ment. To avoid this contradiction, and to preserve clarity of the library, the
overall architecture needs to be transparent and consistent. This is done due to
approproate design decisions. Methods for interval classes, regardless of interval
arithmetic and of the internal representatiuon of intervals are unified. Intervals
are considered as immutable objects. The user is provided with a simple inter-
face to manage rounding policy and interval endpointd representation.

At the moment, JInterval provides a user with several interval arithmetics
(classical real, extended Kaucher, complex rectangular, complex circular, com-
plex sector, complex ring), interval elementary functions, interval vector and
matrix operations, as well as a few methods for inner and outer estimation of
the solution sets to interval linear systems.

A number of applications have been built using JInterval library. A
collection of plugins is developed for the data mining platform KNIME. The
collection include interval regression builder, outlier detector, ILS solver, etc.
Another example is mobile applications, where JInterval is used for position
uncertainty modeling in hybrid navigation.

The experience of JInterval implementation and usage taught us several
lessons, and further development of JInterval will be governed by the following
principles:

1. Java language has a lot of advantages, but its syntax is not expressive
enough for computational programming. Scala language (fully compilant with
JVM) is considered as a basic language for a new JInterval implementation.

2. Presently, JInterval is not compilant with the project of interval arith-
metic standard IEEE P1788. A new implementation will be adjusted for P1788.

3. To achieve high performance, JInterval will be equipped (using Java
Native Interface) with optional plugins for machine-dependent implementation
of high precision arithmetic and interval linear algebra algorithms.

4. For applied software developers, a rich content of the fourth layer of
the library (high-level interval analysis methods) is one of the most valuable
issues. Therefore the replenishment of JInterval with solvers of algebraic and
differential equations, interval optimizers, etc., remains the foreground task.

References:

[1] Java Library for Interval Computations, http://jinterval.kenai.com.

2


