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Working principles

• Fluid supply (fuel gas, air)

• Independent preheaters for
fuel gas and air

• Stack module containing
fuel cells in electric series
connection

• Variable electric load as a
disturbance
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Modeling Approach

Energy balance of the SOFC stack module

ṁCG ,out(t),
ϑCG ,out

ṁCG ,in(t) ,
ϑCG ,in

ṁAG,out(t) ,
ϑAG ,outmFC ,ϑFC (t)

ṁAG,in (t),
ϑAG ,in

Q̇R(t)

P El(t)
system boundary

SOFC

Q̇A(t)

• Control-oriented modeling of a SOFC stack module for the
derivation of control and observer strategies

• Integral balancing of an non-stationary energy conversion
process in the whole stack module as well as in individual
finite volume elements

• Impact of the variation of the internal energy on the local
temperature distribution in the stack module

Dr. Christian Wunderlich, Staxera GmbH 8 DGM Seminar Jülich 2009 

Staxera SOFC Stack Mk100

Production Testing Ongoing Development 

Stack Manufacturing
Structuring of metal sheets
Assembly

• cells
• seals
• powder

Metal Cassettes
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Modeling Approach

• Relation between the variation of the internal energy and the stack temperature
for constant material parameters cFC and mFC

dEFC(t)

dt
= cFC ·mFC ·

dϑFC(t)

dt

• Modeling of the effects on the internal energy

dEFC(t)

dt
= CAG(ϑFC, t) (ϑAG,in(t)− ϑFC(t))

+ CCG(ϑFC, t) (ϑCG,in(t)− ϑFC(t))

+ Q̇R(t) + PEl(t) + Q̇A(t)

• Reaction heat flow of the hydrogen oxidation reaction

Q̇R =
∆RH(ϑFC) · ṁH2(t)

MH2
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Modeling Approach

• Relation between the variation of the internal energy and the stack temperature
for constant material parameters cFC and mFC

cFC ·mFC ·
dϑFC(t)

dt
= CAG(ϑFC, t) (ϑAG,in(t)− ϑFC(t))

+ CCG(ϑFC, t) (ϑCG,in(t)− ϑFC(t))

+ Q̇R(t) + PEl(t) + Q̇A(t)

• Heat transfer including a linearized model for the heat radiation to the ambient
media

Q̇A =
1

RA
(ϑA − ϑFC)

• Ohmic loss effects in the stack material

PEl(t) = RElI
2(t)
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Modeling Approach

• Relation between the variation of the internal energy and the stack temperature
for constant material parameters cFC and mFC

cFC ·mFC ·
dϑFC(t)

dt
= CAG(ϑFC, t) (ϑAG,in(t)− ϑFC(t))

+ CCG(ϑFC, t) (ϑCG,in(t)− ϑFC(t))

+ Q̇R(t) + PEl(t) + Q̇A(t)

• Anode gas: Heat capacity approximated by 2nd-order polynomials for cχ with
χ ∈ {H2, N2, H2O}

CAG(ϑFC, t) = cH2(ϑFC)ṁH2(t)

+ cN2(ϑFC)ṁN2(t) + cH2O(ϑFC)ṁH2O(t)

• Cathode gas: Heat capacity approximated with 2nd-order polynomials for cCG

CCG(ϑFC, t) = cCG(ϑFC) · ṁCG(t)
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Semi-Discretization: The Finite Volume Method

i=1 ,...,L

j=1 ,...,M
k=1,...,N

L ,M ,N

L ,1 ,1

⋮

1,1 ,N

1,M ,11,1 ,1

system
boundary

mass flow
ṁ

• Semi-discretization into nx = L ·M · N finite volume
elements to describe the internal temperature distribu-
tions

• Local energy balances lead to a set of nx cou-
pled ODEs represented by a state vector xT =
[ϑ1,1,1, ..., ϑL,M,N ] ∈ Rnx

• System boundary includes the thermal stack insulation
Dr. Christian Wunderlich, Staxera GmbH 8 DGM Seminar Jülich 2009 

Staxera SOFC Stack Mk100

Production Testing Ongoing Development 

Stack Manufacturing
Structuring of metal sheets
Assembly

• cells
• seals
• powder

Metal Cassettes
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Semi-Discretization: The Finite Volume Method

• ODE for the local temperature distribution in a SOFC stack module

ci,j,k ·mi,j,k · ϑ̇i,j,k(t) = CAG,i,j,k(ϑi,j,k, t)
(
ϑi,j−1,k(t)− ϑi,j,k(t)

)
+ CCG,i,j,k(ϑi,j,k, t)

(
ϑi,j−1,k(t)− ϑi,j,k(t)

)
+ Q̇η,i,j,k(t) + Q̇R,i,j,k(t) + PEl,i,j,k(t)

• Modeling of local temperature-dependent and time-varying influence factors

Heat flow: Q̇η,i,j,k(t) =
∑
η∈N

1

Ri,j,kth,η

(ϑη(t)− ϑi,j,k(t))

Reaction heat flow: Q̇R,i,j,k(t) =
∆RHi,j,k(ϑi,j,k)·ṁH2,i,j,k

(t)

MH2

Ohmic losses: PEl,i,j,k(t) = REl,i,j,kI
2
i,j,k(t)
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Semi-Discretization: The Finite Volume Method

Case 1: Semi-discretization into a single finite volume element leads to the global
energy balance described before

• State variable x and output variable y

x(t) = ϑFC(t)

y(t) = h(x) = ϑFC(t)

• Nonlinear ordinary differential equation

ϑ̇FC = Φ (ϑFC(t), u(t))

yu
ϑFC

Case 2: Semi-discretization into three finite volume elements oriented in the
direction of mass flow

• State vector x and output variable y

x(t) = [ϑ1,1,1(t), ϑ1,2,1(t), ϑ1,3,1(t)]
T

y(t) = h(x) = ϑ1,3,1(t)

• Set of coupled nonlinear ordinary differential
equations

ẋ(t) = Φ (x(t), u(t))

yu

ϑ1,1 ,1 ϑ1,2 ,1 ϑ1,3 ,1
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State Equations — Reformulation for Control
Synthesis
• Input-affine description of the nonlinear thermal subsystem

ẋ(t) = f
(
x(t)

)
+g
(
x(t)

)
· u(t), x ∈ Rnx

y(t) =h(x(t)), y ∈ Rny

u(t) =ṁCG(t) ·∆ϑ(t)

• Underlying controller for the preheating device to achieve the temperature
difference ∆ϑ in the control input u(t)

∆ϑ(t) :=

{
ϑCG(t)− ϑFC(t) for x(t) = ϑFC(t)

ϑCG(t)− ϑ1,1,1(t) for x(t) = [ϑ1,1,1(t), ϑ1,2,1(t), ϑ1,3,1(t)]
T

• Exact input-output linearization with relative degree δ (Computation of the
Lie-Derivatives of y)

diy

dti
= Lifh(x) = Lf

(
Li−1
f h(x)

)
, i = 0, ..., δ − 1

• Relative degree δ denotes the smallest order explicitly depending on the input u
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Modeling Approach — Transformation of the
State-Space

• Nonlinear transformation of the state equations with the relative degree δ = nx
according to

zT = [z1 z2 z3] = [y ẏ ÿ] =
[
h(x) Lfh(x) L2

fh(x)
]

• Nonlinear controller normal form (NCNF)

ż =

 ż1

ż2

ż3

 =

 Lfh(x)
L2
fh(x)

L3
fh(x)

+

 0
0
LgL

2
fh(x)

u
• Feedback linearizing control law for sufficiently small variations of the mass flow

used for the heat-up phase of the SOFC

u :=
−L3

fh(x)− α0h(x)− α1Lfh(x)− α2L
2
fh(x) + µ(t)

LgLfh(x)
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Robust Sliding Mode Control

y (t)
ṁCG(t)

Δ ϑ(t)
[v(t)]

w (t)
u (t)
y(t)

SOFC
system

Interval
slidingmode
controller

Subdivision
strategy

• Rejection of disturbances in the neighborhood of a desired operating point by
means of sliding mode control accounting for physical actuator constraints

• Online application of interval analysis to handle uncertainty in measurements as
well as state reconstruction errors

• Minimization of a quality criterion for choosing adequate values for ṁCG and
∆ϑ to manipulate the enthalpy flow of the cathode gas

• Online subdivision strategy allows for converting the interval-based controller
output [v(t)] into a point-valued system input u(t) = ṁCG(t) ·∆ϑ(t)

• Guarantee of asymptotic stability in spite of uncertainty
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Robust Sliding Mode Control

y (t)
ṁCG(t)

Δ ϑ(t)
[v(t)]

w (t)
u(t)
y(t)

SOFC
system

Interval
slidingmode
controller

Subdivision
strategy

• Mathematical model of the SOFC system in an input-affine description is
extended by a bounded disturbance d ∈ [d]

 ż1

ż2

ż3

 =

 z2

z3

ã(z, p, d)

+

 0
0

b̃(z, p)

 v
• Disturbance influences the system according to ã = L3

fh+ d

• Interval parameters p ∈ [p] have been identified offline in a separate work
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Robust Sliding Mode Control

• Definition of an asymptotically stable sliding surface s(z̃) = 0 with the tracking

error z̃
(j)
1 = z

(j)
1 − z

(j)
1,d

s(z̃) = z̃
(2)
1 + α1z̃

(1)
1 + α0z̃

(0)
1 = 0

and the output z1 and its time derivatives z
(j)
1 , j = 1, ..., δ − 1 = nx − 1

• Stabilization of the motion towards the sliding surface by a suitable Lyapunov
function V

V =
1

2
s2 > 0 for s 6= 0, and its time derivative V̇ = sṡ

• The condition V̇ = sṡ ≤ 0 for the time derivative of the Lyapunov function is
fulfilled with

sṡ ≤ −ηs sign{s} which is guaranteed for

ṡ+ η · sign{s} = −β · sign{s}, η, β > 0

• Control input v is obtained from

ã(z, p, d) + b̃(z, p)v − z(3)
1,d + α1z̃

(2)
1 + α0z̃

(1)
1 = − (β + η) · sign{s}
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Robust Sliding Mode Control

• Control law for the disturbance rejection in the thermal subsystem

[v] :=

[
−ã (z, [p], [d]) + z

(3)
1,d − α1z̃

(2)
1 − α0z̃

(1)
1

b̃ (z, [p])
− 1

b̃ (z, [p])
(η + β)︸ ︷︷ ︸
=:η̃>0

·sign{s}
]∣∣∣∣∣ p ∈ [p]

d ∈ [d]

• Note: 0 6∈ b̃ (z, [p]) is guaranteed by the physical system properties

• Appropriate choice of the switching amplitude η̃ in the case of control design
for interval parameters p ∈ [p] and interval disturbances d ∈ [d]

• Controller output for a guaranteed stabilization of the thermal SOFC system

v :=

{
sup{[v]} for s ≥ 0

inf{[v]} for s < 0
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Robust Sliding Mode Control

• Non-stationary heating phase of the SOFC stack module using an exact
linearizing control law to reach a desired operating point

0 1 2
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700

800

900

1000
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ϑ
in

K
→
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Robust Sliding Mode Control

• Switching to the interval-based sliding mode control law in the point of time
t = 2.5 · 104 s

• Objective: Rejection of disturbances and stabilization of desired operating
points accounting for bounded state and parameter uncertainty

2.5 3 3.5
750

800

850

900

950

t in 104s →

ϑ
in

K
→

 

 

ϑ1,1,1

ϑ1,2,1

ϑ1,3,1
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0
−
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e=ϑ1,3,1,d − ϑ1,3,1
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Robust Sliding Mode Control

• Output of exact linearizing feedback control law u(t) with switching to the
output of the interval-based sliding mode controller v(t) at the point of time
t = 2.5 · 104s

0 0.5 1 1.5 2 2.5 3 3.5
−1

0

1

t in 104s →

{u
,
v
}
in

k
g
K
·s

−
1
→

u(t) v(t)

Problem: Adequate setting of the SOFC system input u = ṁCG∆ϑ with an
available sliding mode controller output v(t)
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Robust Sliding Mode Control

y (t)
ṁCG(t)

Δ ϑ(t)
[v(t)]

w (t)
u (t)
y(t)

SOFC
system

Interval
slidingmode
controller

Subdivision
strategy

• Subdivision strategy to determine appropriate control inputs ṁCG and ∆ϑ
corresponding to [v(t)]

• The product of the mass flow ṁCG and of the temperature difference ∆ϑ
determines the system input

u := (ṁCG ·∆ϑ)

• Operating ranges of the actuators are defined by bounded intervals
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Implementation of the Interval-Based Control Law
in Simulations
• A splitting procedure is employed in each time step k starting with the initial

interval box described by
[
ṁ<0>
CG

]
and

[
∆ϑ<0>

]
which is identical to the

physical actuator constraints

• Multi-sectioning of the input interval vector
[[
ṁ<l>
CG

]
;
[
∆ϑ<l>

]]T
into the

four interval boxes the mass flow and temperature difference in the time step k

[[
ṁ<l>
CG

]
;
[
∆ϑ<l>

]]T
:=

[ [
inf
([
ṁ<l>
CG

])
; mid

([
ṁ<l>
CG

])][
inf
([

∆ϑ<l>
])

; mid
([

∆ϑ<l>
])]]

[[
ṁ<L+1>
CG

]
;
[
∆ϑ<L+1>

]]T
:=

[ [
mid

([
ṁ<l>
CG

])
; sup

([
ṁ<l>
CG

])][
inf
([

∆ϑ<l>
])

; mid
([

∆ϑ<l>
])]]

[[
ṁ<L+2>
CG

]
;
[
∆ϑ<L+2>

]]T
:=

[ [
inf
([
ṁ<l>
CG

])
; mid

([
ṁ<l>
CG

])][
mid

([
∆ϑ<l>

])
; sup

([
∆ϑ<l>

])]]
[[
ṁ<L+3>
CG

]
;
[
∆ϑ<L+3>

]]T
:=

[ [
mid

([
ṁ<l>
CG

])
; sup

([
ṁ<l>
CG

])][
mid

([
∆ϑ<l>

])
; sup

([
∆ϑ<l>

])]]
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Implementation of the Interval-Based Control Law
in Simulations

• A validity test for
[
u<l>

]
=
[
ṁ<l>
CG

] [
∆ϑ<l>

]
is performed according to the

controller output [v] to classify guaranteed consistent, undecided, and
guaranteed inconsistent input intervals

• Consistency of
[
u<l>

]
in [v] (coming directly from the control law) is proven if

sup{[v]} < inf{
[
u<l>

]
} for s ≥ 0

inf{[v]} > sup{
[
u<l>

]
} for s < 0

• Illustration of the consistency test for s > 0 with given actuator constraints
(dashed lines)

Guaranteed
inconsistent

Guaranteed

Undecided

[v(t)]

t=kT

sup ([v(t)])

inf ([v(t)])

tk

[u(t)]

[u(t)]

[u(t)]

ṁCG

Δϑ

sup ([v(t)])

inf ([v(t)])

[Δϑ]

[ṁCG]

consistent
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Implementation of the Interval-Based Control Law
in Simulations

• Possible compositions of u(t) are assessed for l subintervals in each time step k

• Detection of an optimal interval box for [ṁCG] and [∆ϑ] using the quality
criterion

[
J<l>k

]
= κ1

([
∆ϑ<l>k

]
− [∆ϑnom]

)2
+ κ2

([
∆ϑ<l>k

])2
+ κ3

([
ṁ<l>
CG,k

]
− [ṁnom]

)2

• The minimization of Jopt = min
(
inf
([
J<l>k

]))
yields

[
ṁ<opt>
CG

]
and

[
∆ϑ<opt>

]
• Definition of the guaranteed stabilizing control signal for the SOFC system with
v ≥ sup ([v]) according to

u(t) = mid
([
ṁ<opt>
CG

]
·
[
∆ϑ<opt>

])
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Implementation of the Interval-Based Control Law
in Simulations

• Depiction of the optimal system input with nominal values for ṁnom and
∆ϑnom

• Cooling process with a value s > 0 in the sliding mode control design

0 0.5 1 1.5 2 2.5 3 3.5
−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

ṁ in 10−3 kg · s−1 →

∆
ϑ
in

K
→

 

 

sup ([v])

inf ([v])
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Implementation of the Interval-Based Control Law
on the SOFC Test Rig

• Modification of the enthalpy flow of the cathode gas to stabilize a desired
operating point

• Optimal choice for ṁCG and ϑ̇CG to manipulate the enthalpy flow of the
cathode gas for an appropriate stabilization of the temperature y(t) = ϑFC

y (t)=
ϑFC (t)

ṁCG (t)

ϑCG(t)
[v(t)]

w (t)
u (t)
y(t)

SOFC
system

Interval
slidingmode
controller

Subdivision
strategy

ṁAG(t)

ϑAG(t)

MFC

AGPC

ṁAG,d(t)

ϑAG,d(t)

I-SMC
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Implementation of the Interval-Based Control Law
on the SOFC Test Rig

• Both the mass flow controller (MFC) and the anode gas preheater controller
(AGPC) are used to set up a constant operating point for the anode gas

• Underlying controllers for the cathode gas mass flow (MFC) and the cathode
gas preheater temperature (CGPC) are integrated into the structure for the
interval-based sliding mode control (I-SMC)

• Example: Block diagram of the underlying PI control for the anode gas mass
flow ṁAG through the input valve:

ṁAG(t)ṁAG,d(t)
MFC

PI Valve
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Conclusions and Outlook

Conclusions

• Nonlinear modeling of the thermal subsystem of SOFCs including uncertainty in
parameters and system states

• Design of an interval-based sliding mode controller capable of handling
bounded uncertainty in a desired operating point

• Optimal adjustment of the enthalpy flow as a control input of the system
employing a subdivision strategy regarding actuator constraints

• Real-time capability has been shown by simulations of the interval-based sliding
mode control strategy implemented in C-XSC

Dötschel, Thomas; Rauh, Andreas; Aschemann, Harald: Reliable Control and
Disturbance Rejection for the Thermal Behavior of Solid Oxide Fuel Cell
Systems, presented at MATHMOD 2012, Vienna, Austria, 2012. to appear on
IFAC-PapersOnLine.net
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Conclusions and Outlook

Outlook

• Proof of the robustness in case of switching the output y to other volume
elements, where the remaining system dynamics have to be enclosed in state
intervals

• Continuation of the experimental validation of the presented approaches for the
SOFC system available at the Chair of Mechatronics at the University of
Rostock

• Further refinement of the control approach and real-time capable
implementation in C-XSC, interfaced with Matlab, Real Time
Workshop, LabView, and National Instruments Simulation
Interface Toolkit

• Further background concerning the control procedure

Rauh, Andreas; Aschemann, Harald: Interval-Based Sliding Mode Control and
State Estimation for Uncertain Systems, IEEE Intl. Conference on Methods and
Models in Automation and Robotics MMAR 2012, Miedzyzdroje, Poland, 2012.
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