Randomized interval methods for global optimization

Sergey P. Shary, Nikita V. Panov

Institute of computational technologies SD RAS Institute of design and technology for computing machinery SD RAS

Novosibirsk, Russia

Global optimization problem

Find the global minimum of a real-valued function $F : \mathbb{R}^n \supset X \rightarrow \mathbb{R}$ over a rectangular axis-aligned box X:

Global optimization problem is NP-hard

= intractable,

i.e., its solution requires no less than exponential labor expenditures

A.A. Gaganov
On complexity of computing interval range
of a multivariate polynomial
// Kibernetika. – 1985. – №4. – Р. 6–8.

Global optimization problem is NP-hard

Kreinovich-Kearfott theorem

Beyond the class of convex objective functions, the global optimization problem is NP-hard.

V. Kreinovich and R.B. Kearfott Beyond convex? Global optimization is feasible only for convex objective functions: a theorem // Journal of Global Optimization. – 2005.

- Vol. 33. - P. 617-624.

Interval technique

Classical interval arithmetic \mathbb{IR}

is formed by intervals $x\,=\,[\,\underline{x},\overline{x}\,]\,\subset\,\mathbb{R}$, so that

$$x \star y = \left\{ x \star y \mid x \in x, y \in y \right\}$$
 for $\star \in \{+, -, \cdot, /\}$

$$\begin{aligned} x + y &= \left[\underline{x} + \underline{y}, \ \overline{x} + \overline{y} \right] \\ x - y &= \left[\underline{x} - \overline{y}, \ \overline{x} - \underline{y} \right] \\ x \cdot y &= \left[\min\{\underline{x} \ \underline{y}, \underline{x} \ \overline{y}, \overline{x} \ \underline{y}, \overline{x} \ \overline{y}, \overline{x} \ \overline{y}, \overline{x} \ \underline{y}, \overline{x} \ \overline{y}, \overline{x} \ \overline{y}, \overline{x} \ \overline{y} \right] \\ x / y &= x \cdot \left[1 / \overline{y}, \ 1 / \underline{y} \right] \quad \text{for } y \not \geqslant 0 \end{aligned}$$

Interval extension of functions

Definition

Interval function $f : \mathbb{IR}^n \to \mathbb{IR}^m$ is called *interval extension* of the real-valued function $f : \mathbb{R}^n \to \mathbb{R}^m$, if

- 1) f(x) = f(x) for $x \in \mathbb{R}^n$,
- 2) f(x) is inclusion monotonic.

 \Rightarrow outer estimate of the range of values

$$f(x) \supseteq \{ f(x) \mid x \in x \}$$

Natural interval extension

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a rational function of the arguments $(x_1, x_2, \dots, x_n) = x$.

If, for a box $x = (x_1, x_2, ..., x_n)$, defined is the result $f_{\natural}(x)$ of substituting the intervals $x_1, x_2, ..., x_n$ instead of the arguments of the function f(x) and executing all the operations with them according to the interval arithmetic instructions, then

$$\{f(x) \mid x \in x\} \subseteq f_{\natural}(x),$$

i.e. $f_{h}(x)$ contains the range of values of f(x) over x.

Centered form of interval extension

$$f_c(\boldsymbol{x}, \tilde{\boldsymbol{x}}) = f(\tilde{\boldsymbol{x}}) + \sum_{i=1}^n g_i(\boldsymbol{x}, \tilde{\boldsymbol{x}})(\boldsymbol{x}_i - \tilde{\boldsymbol{x}}_i),$$

where
$$ilde{x}=(ilde{x}_1, ilde{x}_2,\dots, ilde{x}_n)$$
 is a fixed "center", $g_i(x, ilde{x})$ are intervals depending on $ilde{x}$ и x .

 $g_i(x, ilde{x})$ can be interval enclosures for $rac{\partial f(x)}{\partial x_i}$ over x

or interval slopes for f over x

G. Alefeld, J. Herzberger, *Introduction to Interval Computations.* – New York: Academic Press, 1983.

R.E. Moore, R.B. Kearfott, M. Cloud, *Introduction to Interval Analysis.* – Philadelphia: SIAM, 2009.

A. Neumaier, *Interval methods for systems of equations.* – Cambridge: Cambridge University Press, 1990.

R.B. Kearfott, *Rigorous Global Search: Continuous Problems.* – Dordrecht: Kluwer, 1996.

Hansen E., Walster G.W. *Global Optimization Using Interval Analysis.* – New York: Marcel Dekker, 2004.

Accuracy of interval evaluation

crucially depends on the width of the box over which we evaluate

For natural interval extension,

$$\mathsf{dist} \left(\ oldsymbol{f}_{lat}(oldsymbol{x}, ilde{x}), f(oldsymbol{x}) \
ight) \ \leq \ C \, \|\mathsf{wid} \ oldsymbol{x}\|$$

For centered forms,

$$\operatorname{dist}\left(\, \boldsymbol{f}_{c}(\boldsymbol{x}, ilde{x}), f(\boldsymbol{x}) \,
ight) \, \leq \, 2 \, (\operatorname{wid} \, \boldsymbol{g}(\boldsymbol{x}, ilde{x}))^{ op} | \, \boldsymbol{x} - ilde{x} \,$$

a new estimate of the minimum is $\min\{\underline{F(Y')}, \underline{F(Y'')}\}$

"Branch-and-bound" strategy

- \diamond organize a list of the boxes Y emerging in the subdivision of the initial box X, jointly with their estimates F(Y);
- \diamondsuit bisect only the box Y that provides the smallest estimate $\underline{F(Y)}$ for $\min_{x\in \pmb{X}}F(x);$
- \diamond the subdivided box is bisected along the widest interval component.

Technical details

To keep and process all the subdomains, a *working list* \mathcal{L} is maintained that consists of the records

$$\Big(\ \boldsymbol{Y} \ , \ \underline{\boldsymbol{F}(\boldsymbol{Y})} \ \Big),$$

where Y is an interval *n*-box, $Y \subseteq X$.

The records in \mathcal{L} are usually ordered so as the estimates F(Y) increase.

The first record of the list, the corresponding box Y and the estimate F(Y) are called *leading* at the current step.

The simplest interval global optimization algorithm

Input

Interval extension $F : \mathbb{I}X \to \mathbb{I}\mathbb{R}$ of the objective function F. A prescribed accuracy $\epsilon > 0$.

Output

An estimate for the global minimum F^* for the function F over X.

Algorithm

 $Y \leftarrow X$; compute F(Y) and initialize the list $\mathcal{L} := ig \{(Y, \underline{F(Y)})ig \};$

DO WHILE (wid $(F(Y)) \ge \epsilon$)

choose the component l along which the box Y has the largest width, i.e. wid $Y_l = \max_i$ wid Y_i ;

bisect the l-th component in Y to produce the subboxes Y' и Y''; compute F(Y') and F(Y'');

delete the record (Y,F(Y)) from the list $\mathcal L$;

put the records $(Y', \underline{F(Y')})$ and $(Y'', \underline{F(Y'')})$ into the list \mathcal{L} so that the second fields of the records from \mathcal{L} icrease;

denote the leading record of $\mathcal L$ as (Y,F(Y)) ;

END DO

 $F^* \leftarrow F(Y)$;

- domain configuration

resulted from the work of the algorithm

Modifications

Monotonicity of the objective function

► More accurate interval evaluation.

► Local optimization procedures.

▶ Upper bound of the global minimum.

Works well

for problems of the small and moderate dimension...

Works well

for problems of the small and moderate dimension . . .

And what for large dimensions?

"Stagnation" of interval evaluation

- considerable decrease in the width of the box

results in a small increase of the enclosure sharpness

The deterministic "branch-and-bound"

turns out to be irrelevant ...

The deterministic "branch-and-bound"

turns out to be irrelevant ...

Randomization? . . .

Randomization

= introducing

random transitions

of the control

into an algorithm

"Simulated annealing"

choose a starting approximation $y = x_0 \in X$;

```
set the starting "temperature" T = T_0 > 0;
```

set N_T , the number of trials per one temperature level;

```
DO WHILE (T > T_{fin})
```

DO FOR k = 1 **TO** N_T

randomly choose a new point $z \in X$ according to the rule $\mathbb{S}(y)$;

accept z, i.e. $y \leftarrow z$, with probability $P_T(y,z)$;

END DO

decrease the temperature $T \leftarrow \alpha T$;

END DO

Probability of accepting the new estimate x'

where

 $\Delta F := F(z) - F(y)$

Interval simulated annealing

Input

Interval extension $F : \mathbb{I}X \to \mathbb{I}\mathbb{R}$ of the objective function F. A prescribed accuracy $\epsilon > 0$.

Output

An estimate of the global minimum F^* over X from below.

Algorithm

 $Y \leftarrow X$;

set a starting "temperature" $T = T_0 > 0$;

set N_T , the number of trials per one temperature level; compute F(Y) and initialize the list $\mathcal{L} := \{ (Y, \underline{F(Y)}) \};$

```
DO WHILE (wid (F(Y)) \ge \epsilon)
   DO FOR k = 1 TO N_T
        randomly choose, from the list \mathcal{L}, a record (Z, F(Z))
             according to the rule S(Y);
        DO (with probability P_T(Y, Z))
             bisect {old Z} along the widest component
                to produce the boxes Z' and Z'';
             compute F(Z') and F(Z'');
             delete the record (Z, F(Z)) from the list \mathcal{L};
             put the records (Z', F(Z')) and (Z'', F(Z'')) into \mathcal{L}
                in increasing order of the second field;
```

END DO

denote the leading record of the list $\mathcal L$ as $(Y, \underline{F(Y)})$;

END DO

decrease the temperature value $T \leftarrow \alpha T$;

END DO

 $F^* \leftarrow \underline{F(Y)}$;

Subdivision probability for the box Z

$$\mathsf{P}_T(\boldsymbol{Y}, \boldsymbol{Z}) \;=\; \left\{ egin{array}{ccc} 1, & ext{for} & \Delta F \leq 0, \ & \ \exp\left(-rac{\Delta F}{kT}
ight), & ext{for} & \Delta F \geq 0, \end{array}
ight.$$

where

$$\Delta F := \underline{F(Z)} - \underline{F(Y)}$$

Interval simulated annealing

S.P. Shary Randomized algorithms in interval global optimization *Numerical Analysis and Applications*, Vol. 1 (2008), No. 4, pp. 376–389.

Interval genetic algorithm ?

Interval genetic algorithm

N.V. Panov

Joining stochastic and interval approaches for the solution of problems of global optimization of functions *Computational Technologies*, 2009, vol. 14, No. 5, pp. 49–65.

N.V. Panov, S.P. Shary

Interval evolutionary algorithm for searching global optimum *Proceedings of Altai State University*, 2011, No. (69), vol. 2, pp. 108–113.

in Russian for the time being

Summary

1) Global optimization is a fruitful applications area of the interval methods

- 'Interval simulated annealing'' is a new global optimization procedure in which randomization can be combined with verification of the results.
- 3) Next on this way are interval genetic algorithms, etc.

Thanks for your attention!