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Overview: Automatic Code Transformation. . .

IEEE754 FP arithmetic may suffer from inaccuracy

critical matter in scientific computing, embedded systems,. . .

existing solutions reserved to experts and implemented manually

Our objective: accurate code synthesis

Allows standard developer to automatically transform his/her code

Take into account two opposite criteria

accuracy

execution time

We present here a first step towards our final objective →
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Synopsis

We propose to automatically introduce at the compile-time. . .

a compensation step

Synthesis of
compensated code

Accurate operation
set

Input source file Output source file

Parse C source code

How we do that? →
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Synopsis

We propose to automatically introduce at the compile-time. . .

a compensation step

Synthesis of
compensated code

Accurate operation
set

Input source file Output source file

Tool which replace floating point operations by compensated algorithms
Compensated terms are accumulated and added to original computations

How we do that? →
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Synopsis

We propose to automatically introduce at the compile-time. . .

a compensation step

Synthesis of
compensated code

Accurate operation
set

Input source file Output source file

Generate new code
Provide a compensated computation that improves the accuracy

How we do that? →
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IEEE754 Floating-Point Arithmetic

Floating-point numbers are approximations of real numbers

Let x ∈ R, (−1)s · be ·m express x ∈ F

The standard define

Rounding modes: nearest, toward 0, +∞, −∞
Several formats: binary32, binary64,. . .

These errors can cause big human and material damages →
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IEEE754 Floating-Point Arithmetic

Floating-point numbers are approximations of real numbers

Let x ∈ R, (−1)s · be ·m express x ∈ F

Finite representation implies accuracy variations and losses

Rounding errors, cancellations, absorptions

(a + b)− a = 0 if a� b ∗

∗absorption example

These errors can cause big human and material damages →
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Existing Techniques

Solutions exists to prevent inaccuracy behaviors

Extending the computing precision size

(software libraries (MPFR), extended arithmetic)

Rewriting expressions

(rewriting tools [Ioualalen Martel])

example: (a + b)− a = 0  (a− a) + b = b if a� b

More accurate algorithms

(sorting (sum), compensated algorithms,. . . )

Among these possibilities we choose to generate compensated algorithms →
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Compensated Algorithms – TwoSum EFT

To compensate a sum

1: [x , y ] = TwoSum(a, b)
2: x = fl(a + b)
3: z = fl(x − a)
4: y = fl((a− (x − z)) + (b − z))

TwoSum (Knuth)

EFT (Error-Free
Transformation:

x + y = a + b

optimal (cost, time)
[Kornerup et al.]

a b

x

y+

a b

x

y

+

−

−

−

−

+

Figure: TwoSum: 6 flops
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Compensated Algorithms – TwoProduct EFT

To compensate a product

1: [x , y ] = TwoProduct(a, b)
2: x = fl(a · b)
3: [a1, a2] = Split(a)
4: [b1, b2] = Split(b)
5: y = fl(a2·b2−(((x−a1·b1)−a2·b1)−a1·b2))

TwoProduct (Veltkamp)

1: [x , y ] = Split(a)
2: factor = 227 + 1
3: c = fl(factor · a)
4: x = fl(c − (c − a))
5: y = fl(a− x)

Split (Dekker)

a b

x

y×

a b

x

y

factor

× × ×

− −

− −

− −×

× ××−

−

−

−

Figure: TwoProduct: 17
flops
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Methodology

Principle of the compensation step

Transform each floating-point operations (⊕,	,⊗) using compensation
algorithms (TwoSum, TwoProduct) and accumulate compensate terms in

parallel of original computations

Perspectives: keep in mind the execution time criteria

Because these transformations can reduce the execution time. . .
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ToolC File
ASM-like

File
Interpreter

CIL*

GCC -E

write in OCaml
analyse and apply transformations

optimized code

Figure: Tool schematic of our methodology implementation

∗

∗[Necula et al.]
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Advantages and Drawbacks

Advantages

Automatic → fast, don’t need to be an expert

Compile-time optimization → data independence

Drawbacks

Don’t treat all the basic operations (÷,√, . . .)
→ but they’re existing solutions (Newton approx.,. . . )

Can highly reduce performances

→ but we have some ideas (developed in the next section)
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Code Analysis – SSA Conversion

First compilation step

Static Single Assignment
Form

Each variable is affected
only one time (make
optimisation applications
easier)

Add special information
called φ nodes (when
variable can take different
paths)

x = 5.67
x = x − 3.33

x < 3.0?

y = x ∗ 2.053
w = y

w = x − y
z = w ∗ y

y = x − 3.89

Figure: Control flow graph of an
example program
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Code Analysis – SSA Conversion

First compilation step

Static Single Assignment
Form

Each variable is affected
only one time (make
optimisation applications
easier)

Add special information
called φ nodes (when
variable can take different
paths)

x1 = 5.67
x2 = x1 − 3.33

x2 < 3.0?

y1 = x2 ∗ 2.053
w1 = y1

y3 = φ(y1, y2)
w2 = x2 − y3

z1 = w2 ∗ y3

y2 = x2 − 3.89

Figure: Control flow graph of an
example program in SSA form
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Code Analysis – FP Computation Sequence Detection

Second step

Each FP operation sequences
with ⊕,	,⊗ operation
inside a basic block

(special case: if the sequence
contains a single operation
and if it not included in a
loop: no transformation)

x1 = 5.67
x2 = x1 − 3.33

x2 < 3.0?

y1 = x2 ∗ 2.053
w1 = y1

y3 = φ(y1, y2)
w2 = x2 − y3

z1 = w2 ∗ y3

y2 = x2 − 3.89

Figure: Sequence Detection

We are ready to compensation transformation →
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Code Transformation – Principle

Transformation step

Transform ⊕,	 in TwoSum

Transform ⊗ in TwoProduct

Compensation terms
accumulation

Final compensation

. . .

y1 = x2 ∗ 2.053
w1 = y1

y3 = φ(y1, y2)
[w2, εw2 ] = TwoSum(x2,−y3)

[z1, εz1 ] = TwoProduct(w2, y3)

y2 = x2 − 3.89

Figure: Compensated code synthesis
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Code Transformation – Principle

Transformation step

Transform ⊕,	 in TwoSum

Transform ⊗ in TwoProduct

Compensation terms
accumulation

Final compensation

. . .

y1 = x2 ∗ 2.053
w1 = y1

y3 = φ(y1, y2)
[w2, εw2 ] = TwoSum(x2,−y3)

[z1, εz1 ] = TwoProduct(w2, y3)
acc1 = εw2 ∗ y3

acc2 = εz1 + acc1

y2 = x2 − 3.89

Figure: Compensated code synthesis
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Code Transformation – Principle

Transformation step

Transform ⊕,	 in TwoSum

Transform ⊗ in TwoProduct

Compensation terms
accumulation

Final compensation

. . .

y1 = x2 ∗ 2.053
w1 = y1

y3 = φ(y1, y2)
[w2, εw2 ] = TwoSum(x2,−y3)

[z1, εz1 ] = TwoProduct(w2, y3)
acc1 = εw2 ∗ y3

acc2 = εz1 + acc1

z2 = z1 + acc2

y2 = x2 − 3.89

Figure: Compensated code synthesis
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Code Transformation – Pattern Introduction

A variable. . .

A variable x becomes a pair (x ,εx ), with:

x , the value of variable
εx , the initial error (supposed null here)

A return of an operator. . .

A return of an operator ⊕,	,⊗ becomes a pair (x ,εx ), with:

x , the result of the operator
εx , the accumulated compensated value
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Code Transformation – Sum Pattern Transformation

a b

x

+

Figure: Pattern A

(a, εa) (b, εb)

(x , εx )

+

+

+

Figure: Transformation

x = a + b
εx = (εa + εb) + εa+b
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Code Transformation – Product Pattern Transformation

a b

x

×

Figure: Pattern B

(a, εa) (b, εb)

(x , εx )

× ×

+

+

×

Figure: Transformation

x = a× b
εx = [(εa × b) + (εb × a)] + εa×b

Our transformations are not EFT: we loose the second order term
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Code Transformation – Example

a b
c

d

e f g

x

+

+

+

×

×

×

x + y

y ′′

Before transformation

Let the following expression of x

x = (((((a + b) + c) × d) + e) × (f × g)
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Code Transformation – Example

a b
c

d

e f g

x

x + y

+

+

+

×

×

×

y

y ′′

Pattern A transformation

x is the result of a ⊕ b

x = a + b

y is defined by the generated error of the
TwoSum algorithm

y = εa+b
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Code Transformation – Example

a b
c

d

e f g

x

x + y

+

+

+

×

×

×

+

y

y ′′

Pattern A transformation

x is the result of x ⊕ c

x = x + c

y is defined by the adding of the inherited
error and the generated error of the TwoSum

algorithm

y = y + εx+c
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Code Transformation – Example

a b
c

d

e f g

x

x + y

+

+

+

×

×

×

+

×

+

y

y ′′

Pattern B transformation

x is the result of x ⊗ d

x = x × d

y is defined by the adding of a function of
the inherited error and the generated error of

TwoProduct algorithm

y = (y × d) + εx×d
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Code Transformation – Example

a b
c

d

e f g

x

x + y

+

+

+

×

×

×

+

×

+

+

y y ′′

Pattern A transformation

x is the result of x ⊕ e

x = x + e

y is defined by the adding of the inherited
error and the generated error of the TwoSum

algorithm

y = y + εx+e
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Code Transformation – Example

a b
c

d

e f g

x

x + y

+

+

+

×

×

×

+

×

+

+

y ′′y ′

Pattern B transformation

x′ is equal to x and x′′ is equal to f ⊗ g

x′ = x

x′′ = (f × g)

y ′ is equal to y and y ′′ is the generated error
of the TwoProduct algorithm

y ′ = y

y ′′ = εf×g
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Code Transformation – Example

a b
c

d

e f g

x

y

x + y

+

+

+

×

×

×

+

×

+

+

y ′′××

+

+

Pattern B transformation

x is the result of x′ ⊗ x′′

x = x′ × x′′

y is defined by the adding of a function of
the inherited errors and the generated error of

the TwoProduct algorithm

y = ((y ′ × x”) + (y ′′ × x′)) + εx′×x′′
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Code Transformation – Example

a b
c

d

e f g

x + y

+

+

+

×

×

×

+

×

+

+

y ′′××

+

+

+

Final result transformation

x is the result of the adding of the expression
and the compensated accumulated terms

x = x + y
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Execution-Time Criteria

In order to save execution-speed, we must add an execution-time criteria!

Ideas to explore. . .

Propose trade-offs between accuracy and speed
[SCAN10, PASCO10] (for example: compensate one operation on
two/three/. . . )

Use new instructions (ADD3, FMA) [Ogita et al.]
1: [x , y ] = TwoSumAdd3(a, b)
2: x = fl(a + b)
3: y = add3(a, b,−x)

TwoSumADD3

1: [x , y ] = TwoProductFMA(a, b)
2: x = fl(a + b)
3: y = fma(a, b,−x)

TwoProductFMA

Exploit Instruction Level Parallelism (ILP). cf. More Instruction
Level Parallelism Explains the Actual Efficiency of Compensated
Algorithms [Langlois Louvet]
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Execution-Time Criteria

In order to save execution-speed, we must add an execution-time criteria!

Ideas to explore. . .

Propose trade-offs between accuracy and speed
[SCAN10, PASCO10] (for example: compensate one operation on
two/three/. . . )

Use new instructions (ADD3, FMA) [Ogita et al.]
1: [x , y ] = TwoSumAdd3(a, b)
2: x = fl(a + b)
3: y = add3(a, b,−x)

TwoSumADD3

1: [x , y ] = TwoProductFMA(a, b)
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TwoProductFMA
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Example – Introduction

Example from [Graillat et al.]

Authors evaluate the Horner form of the polynomial
p(x) = (0.75− x)5(1− x)11 close to its multiple roots. They show that
compensation improves the accuracy

Can we reproduce automatically these results?

We apply our method to this test case aiming to reproduce automatically
what experts have done manually
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Example – Results

Figure: Results of p(x) and zooms on its roots before automatic transformation

As expected original results are meaningless
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Example – Results

Figure: Results of p(x) and zooms on its roots after automatic transformation

The transformed code provides more accuracy and yields a smoother
polynomial evaluation
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Example – Results

Figure: Relative error computed with CompHorner (left) and with the
automatically generated code (right)

Our tool allows non expert user to obtain automatically, quickly and
easily such accuracy improvement
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Conclusion & Perspectives

We have. . .

a tool able to parse a large subset of C and to apply automatically
compensations on basic floating-point operations and to generate
optimized code

similar results to expert manual solution in our test cases

We need. . .

to apply our tool on other test cases (Chebyshev, Bernstein. . . )

to propose optimizations for execution-time criteria

to write formal proofs of our transformations (estimate their impact)

to add other transformations (÷,√, . . .)
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Thank You

Questions?
laurent.thevenoux@univ-perp.fr
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