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Interval arithmetic over finitely many endpoints

S.M. Rump, Hamburg/Tokyo

Summary:

Let a finite set IB of interval bounds be given.

Which properties of IB are necessary (and sufficient)
such that an interval arithmetic over IB satisfies
as many as possible mathematical properties?
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The goal:

For intervals A, B the following should be true without exception flag:

0 ∈ A − B ⇔ A ∩ B , ∅
0 ∈ A · B ⇔ 0 ∈ A ∪ B
A ⊆ B/(B/A) if 0 < A ∪ B

avoiding problems with underflow, and
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avoiding problems with underflow, and

α ∈ interval(α)
[α, β] = hull(interval(α), interval(β))
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The goal:

For intervals A, B the following should be true without exception flag:

0 ∈ A − B ⇔ A ∩ B , ∅
0 ∈ A · B ⇔ 0 ∈ A ∪ B
A ⊆ B/(B/A) if 0 < A ∪ B

avoiding problems with underflow, and

α ∈ interval(α)
[α, β] = hull(interval(α), interval(β))

or A ⊆ log(exp(A)) for any A without exception flag

for finitely many interval bounds .
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A standard definition of interval arithmetic

Start with real bounds a, b, c, d ∈ IR and define

[a, b] + [c, d] = [a + c, b + d]
[a, b] · [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]
etc.
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Note the interval bounds are real numbers.
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Define ∇,∆ : IR→ IF
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A standard definition of interval arithmetic

Start with real bounds a, b, c, d ∈ IR and define

[a, b] + [c, d] = [a + c, b + d]
[a, b] · [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]
etc.

Note the interval bounds are real numbers.

Define ∇,∆ : IR→ IF

and continue with floating-point bounds ã, b̃, c̃, d̃ ∈ IF :

[ã, b̃] + [c̃, d̃] = [∇(ã + c̃),∆(b̃ + d̃)]
etc.
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Treatment of overflow

To cover overflow, an extension ∇,∆ : IR→ IF∗

with IF∗ := IF∪ {−∞,∞} is mandatory (⇒ exception-free).
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Treatment of overflow

To cover overflow, an extension ∇,∆ : IR→ IF∗

with IF∗ := IF∪ {−∞,∞} is mandatory (⇒ exception-free).

This allows verified floating-point bounds for x ◦ y or f (x)

for all real x, y, also in case of overflow.
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for all real x, y, also in case of overflow.

The range of an interval is defined to be a subset of IR.
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To cover overflow, an extension ∇,∆ : IR→ IF∗

with IF∗ := IF∪ {−∞,∞} is mandatory (⇒ exception-free).

This allows verified floating-point bounds for x ◦ y or f (x)

for all real x, y, also in case of overflow.

The range of an interval is defined to be a subset of IR.

This implies the appealing property

0 · x = [0, 0] for all intervals x.
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Treatment of overflow

To cover overflow, an extension ∇,∆ : IR→ IF∗

with IF∗ := IF∪ {−∞,∞} is mandatory (⇒ exception-free).

This allows verified floating-point bounds for x ◦ y or f (x)

for all real x, y, also in case of overflow.

The range of an interval is defined to be a subset of IR.

This implies the appealing property

0 · x = [0, 0] for all intervals x.

So far, so good.



5/24

JJ
II
J
I

Back

Close

Infinite bounds - an abuse?

Now x = exp([0, 1000]) = [1,∞) in IEEE 754,
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Infinite bounds - an abuse?

Now x = exp([0, 1000]) = [1,∞) in IEEE 754,

so naturally inf(x) = 1 and sup(x) = ∞.
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Infinite bounds - an abuse?

Now x = exp([0, 1000]) = [1,∞) in IEEE 754,

so naturally inf(x) = 1 and sup(x) = ∞.

Since x ⊆ IR for all intervals x, it seems natural to define

interval(∞) := ∅ .
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Unexpected, wrong results I

Consider

f (x) =
10x + 5

(ex)3 − 1 .
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Unexpected, wrong results I

Consider

f (x) =
10x + 5

(ex)3 − 1 .

cube(x) := x3 is monotone over IR, suggesting the implementation
function yy = cube(xx)
xxinf = num2interval(inf(xx)); yyinf = xxinf*xxinf*xxinf;
xxsup = num2interval(sup(xx)); yysup = xxsup*xxsup*xxsup;
yy = convexHull(yyinf,yysup);
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cube(x) := x3 is monotone over IR, suggesting the implementation
function yy = cube(xx)
xxinf = num2interval(inf(xx)); yyinf = xxinf*xxinf*xxinf;
xxsup = num2interval(sup(xx)); yysup = xxsup*xxsup*xxsup;
yy = convexHull(yyinf,yysup);

Then zz=f(nums2interval(0,1000)) yields zz=[4, 10004],

suggesting f has no positive real root
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Unexpected, wrong results I

Consider

f (x) =
10x + 5

(ex)3 − 1 .

cube(x) := x3 is monotone over IR, suggesting the implementation
function yy = cube(xx)
xxinf = num2interval(inf(xx)); yyinf = xxinf*xxinf*xxinf;
xxsup = num2interval(sup(xx)); yysup = xxsup*xxsup*xxsup;
yy = convexHull(yyinf,yysup);

Then zz=f(nums2interval(0,1000)) yields zz=[4, 10004],

suggesting f has no positive real root

without error message! But ...
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Unexpected, wrong results II

... there is a positive root: Graph of f between −0.6 and 3



8/24

JJ
II
J
I

Back

Close

Unexpected, wrong results III

As before, zz=nums2interval(0,1000) implies xx = exp(zz)= [1,∞)
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Unexpected, wrong results III

As before, zz=nums2interval(0,1000) implies xx = exp(zz)= [1,∞)

⇒ xxsup = num2interval(sup(xx)) = ∅
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Unexpected, wrong results III

As before, zz=nums2interval(0,1000) implies xx = exp(zz)= [1,∞)

⇒ xxsup = num2interval(sup(xx)) = ∅

hence

(
e[0,1000]

)3
⊆ cube(exp(nums2interval(0,1000))) = [1, 1],

a fatal mistake.
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Unexpected, wrong results IV

This semantic error is tracked by the nonstandardNumber flag.
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Unexpected, wrong results IV

This semantic error is tracked by the nonstandardNumber flag.

However, Neumaier writes in his Vienna-proposal:
“The semantic error would probably be caught easily on debugging even
without the flag, since instead of a wide result something very narrow is
returned.”
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This semantic error is tracked by the nonstandardNumber flag.

However, Neumaier writes in his Vienna-proposal:
“The semantic error would probably be caught easily on debugging even
without the flag, since instead of a wide result something very narrow is
returned.”

And he admits:

“I expect that the nonstandardNumber flag will never be inspected, except
for debugging purposes.”
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Unexpected, wrong results IV

This semantic error is tracked by the nonstandardNumber flag.

However, Neumaier writes in his Vienna-proposal:
“The semantic error would probably be caught easily on debugging even
without the flag, since instead of a wide result something very narrow is
returned.”

And he admits:

“I expect that the nonstandardNumber flag will never be inspected, except
for debugging purposes.”

However, debugging requires a suspicion
(in the example f(nums2interval(0,1000)) ⊆ [4, 10004]).



10/24

JJ
II
J
I

Back

Close

Definition of directed rounding I

Clearly ∆(r) = min{ f ∈ IF : r ≤ f } for r ∈ IR .
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Clearly ∆(r) = min{ f ∈ IF : r ≤ f } for r ∈ IR .

What about ∆(±∞) ?

A natural definition is

∆(r) = min{ f ∈ IF : r ≤ f } for r ∈ IR∗ with min(∅) = ∞,

a common definition in optimization.
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What about ∆(±∞) ?

A natural definition is

∆(r) = min{ f ∈ IF : r ≤ f } for r ∈ IR∗ with min(∅) = ∞,

a common definition in optimization.

In other words, if there is no f with r ≤ f , then the result is∞.
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Definition of directed rounding I

Clearly ∆(r) = min{ f ∈ IF : r ≤ f } for r ∈ IR .

What about ∆(±∞) ?

A natural definition is

∆(r) = min{ f ∈ IF : r ≤ f } for r ∈ IR∗ with min(∅) = ∞,

a common definition in optimization.

In other words, if there is no f with r ≤ f , then the result is∞.

Moreover, ∇(r) = −∆(−r).
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Definition of directed rounding II

The natural definition num2interval(r)= [∇(r),∆(r)] for r ∈ IR∗ implies

num2interval(∞) = (realmax,∞]



11/24

JJ
II
J
I

Back

Close

Definition of directed rounding II

The natural definition num2interval(r)= [∇(r),∆(r)] for r ∈ IR∗ implies

num2interval(∞) = (realmax,∞]

Hence

(
e[0,1000]

)3
⊆ cube(exp(nums2interval(0,1000))) = [1,∞)
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Definition of directed rounding II

The natural definition num2interval(r)= [∇(r),∆(r)] for r ∈ IR∗ implies

num2interval(∞) = (realmax,∞]

Hence

(
e[0,1000]

)3
⊆ cube(exp(nums2interval(0,1000))) = [1,∞)

Moreover, a best possible real interval [r1, r2] is rounded

into the best possible floating-point interval [∇(r1),∆(r2)] ,

which may serve to define all interval operations including functions.
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Drawbacks of the popular definition of interval arithmetic

1) The apparent unsymmetry between overflow and underflow:
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Drawbacks of the popular definition of interval arithmetic

1) The apparent unsymmetry between overflow and underflow:

[0, realmax] + 1 = [1,∞) =: xx with∞ < xx , but

1/xx = [0, 1] =: yy with 0 ∈ yy .
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Define Huge and Tiny ?
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Drawbacks of the popular definition of interval arithmetic

1) The apparent unsymmetry between overflow and underflow:

[0, realmax] + 1 = [1,∞) =: xx with∞ < xx , but

1/xx = [0, 1] =: yy with 0 ∈ yy .

Define Huge and Tiny ?

2) A two-step definition: First intervals over IR, then over IF.

Is it advantageous to define intervals directly over IF ?

3) Not necessarily inf(xx), sup(xx) ∈ xx for intervals xx.
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The role of∞ in numerical analysis

I claim
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I claim

If∞ occurs in a numerical computation, then in the

vast majority of all cases it stems from an overflow.
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In other words,∞ is (ab)used to express something “huge”, not infinity.
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In other words,∞ is (ab)used to express something “huge”, not infinity.

A true∞, like log(0), is most likely an error.
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The role of∞ in numerical analysis

I claim

If∞ occurs in a numerical computation, then in the

vast majority of all cases it stems from an overflow.

In other words,∞ is (ab)used to express something “huge”, not infinity.

A true∞, like log(0), is most likely an error.

Typical examples are

exp(1000), 2 · realmax, etc.

but not 1/0, cot(0), etc.
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The role of∞ in numerical analysis

I claim

If∞ occurs in a numerical computation, then in the

vast majority of all cases it stems from an overflow.

In other words,∞ is (ab)used to express something “huge”, not infinity.

A true∞, like log(0), is most likely an error.

Typical examples are

exp(1000), 2 · realmax, etc.

but not 1/0, cot(0), etc.

[An exception is infeasibility in optimization, please ask later.]
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Rather than just defining some new rounding or interval arithmetic,

we aim on a mathematical foundation.
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Interval arithmetic over finitely many bounds
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Interval arithmetic over finitely many bounds

IIIR the set of IR-intervals are non-empty, connected subsets of IR .

E.g. [−2, π], (0, 1] or (−∞,
√

2) .
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Interval arithmetic over finitely many bounds

IIIR the set of IR-intervals are non-empty, connected subsets of IR .

E.g. [−2, π], (0, 1] or (−∞,
√

2) .

IB = {b1, . . . , bk} is a weakly admissible set of interval bounds bi ∈ IIIR iff

α ∈ bi, β ∈ bi+1 ⇒ α < β for 1 ≤ i < k.
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Interval arithmetic over finitely many bounds

IIIR the set of IR-intervals are non-empty, connected subsets of IR .

E.g. [−2, π], (0, 1] or (−∞,
√

2) .

IB = {b1, . . . , bk} is a weakly admissible set of interval bounds bi ∈ IIIR iff

α ∈ bi, β ∈ bi+1 ⇒ α < β for 1 ≤ i < k.

IB = {b1, . . . , bk} is totally ordered by bi � b j for 1 ≤ i ≤ j ≤ k .

IB = {b1, . . . , bk} is an admissible set of interval bounds iff

inf b1 = −∞ and sup bk = ∞ .
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Interval arithmetic over finitely many bounds

IIIR the set of IR-intervals are non-empty, connected subsets of IR .

E.g. [−2, π], (0, 1] or (−∞,
√

2) .

IB = {b1, . . . , bk} is a weakly admissible set of interval bounds bi ∈ IIIR iff

α ∈ bi, β ∈ bi+1 ⇒ α < β for 1 ≤ i < k.

IB = {b1, . . . , bk} is totally ordered by bi � b j for 1 ≤ i ≤ j ≤ k .

IB = {b1, . . . , bk} is an admissible set of interval bounds iff

inf b1 = −∞ and sup bk = ∞ .

IIIB = {~a, b� : a, b ∈ IB, a � b} ∪ ∅ the set of proper intervals .
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Interval arithmetic over finitely many bounds

IIIB = {~a, b� : a, b ∈ IB, a � b} ∪ ∅ the set of proper intervals .

range(~a, b�) = a∪b , range(IIIB) = b1∪bk .
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range(~a, b�) = a∪b , range(IIIB) = b1∪bk .

IIIB is a complete lattice; IB admissible⇔ range(IB) = IR .



16/24

JJ
II
J
I

Back

Close

Interval arithmetic over finitely many bounds

IIIB = {~a, b� : a, b ∈ IB, a � b} ∪ ∅ the set of proper intervals .

range(~a, b�) = a∪b , range(IIIB) = b1∪bk .

IIIB is a complete lattice; IB admissible⇔ range(IB) = IR .

Interval operations ◦ : IIIB × IIIB→ IIIB for ◦ ∈ {+,−, ·, /} are defined by

A ◦ B :=
⋂
{C ∈ IIIB : α ◦ β ∈ C for all α ∈ A, β ∈ B}
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A ◦ B :=
⋂
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Define ♦ : IR→ IIIB with ♦(ξ) :=
⋂
{C ∈ IIIB : ξ ∈ C}
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Interval arithmetic over finitely many bounds

IIIB = {~a, b� : a, b ∈ IB, a � b} ∪ ∅ the set of proper intervals .

range(~a, b�) = a∪b , range(IIIB) = b1∪bk .

IIIB is a complete lattice; IB admissible⇔ range(IB) = IR .

Interval operations ◦ : IIIB × IIIB→ IIIB for ◦ ∈ {+,−, ·, /} are defined by

A ◦ B :=
⋂
{C ∈ IIIB : α ◦ β ∈ C for all α ∈ A, β ∈ B}

Define ♦ : IR→ IIIB with ♦(ξ) :=
⋂
{C ∈ IIIB : ξ ∈ C}

Finally IIIB = IIIB ∪ {NaI} ; A/B = NaI for 0 ∈ B .
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Interval arithmetic over finitely many bounds: Examples

IB := {{ f } : f ∈ IF} is weakly admissible.
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IB := {{ f } : f ∈ IF} is weakly admissible.

IB := {{ν} : ν ∈ IN, 4 ≤ ν ≤ 9} ∪ {(−∞, 0), [3.14, 3.15], [20,∞)} is admissi-
ble.
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IB := {{ f } : f ∈ IF} is weakly admissible.

IB := {{ν} : ν ∈ IN, 4 ≤ ν ≤ 9} ∪ {(−∞, 0), [3.14, 3.15], [20,∞)} is admissi-
ble.

IB := {N, P0} with N = (−∞, 0) and P0 = [0,∞) is admissible.
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IB := {N, P0} with N = (−∞, 0) and P0 = [0,∞) is admissible.

But (−5)/3→ �(−5)/ � (3) = N/P0 = NaI and (−5)/3 < �(−5)/ � (3) .
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IB := {{ f } : f ∈ IF} is weakly admissible.

IB := {{ν} : ν ∈ IN, 4 ≤ ν ≤ 9} ∪ {(−∞, 0), [3.14, 3.15], [20,∞)} is admissi-
ble.

IB := {N, P0} with N = (−∞, 0) and P0 = [0,∞) is admissible.

But (−5)/3→ �(−5)/ � (3) = N/P0 = NaI and (−5)/3 < �(−5)/ � (3) .

IB := {N, 0, P} with N = (−∞, 0) and P = (0,∞) is also admissible.
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Interval arithmetic over finitely many bounds: Examples

IB := {{ f } : f ∈ IF} is weakly admissible.

IB := {{ν} : ν ∈ IN, 4 ≤ ν ≤ 9} ∪ {(−∞, 0), [3.14, 3.15], [20,∞)} is admissi-
ble.

IB := {N, P0} with N = (−∞, 0) and P0 = [0,∞) is admissible.

But (−5)/3→ �(−5)/ � (3) = N/P0 = NaI and (−5)/3 < �(−5)/ � (3) .

IB := {N, 0, P} with N = (−∞, 0) and P = (0,∞) is also admissible.

Then (−5)/3→ �(−5)/ � (3) = N/P = N and (−5)/3 ∈ �(−5)/ � (3) .
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Interval arithmetic over finitely many bounds: Theorems I

Th. 1 Let IB be admissible and {0}, {1}, {α}, {1/α} ∈ IB for 0 < α ∈ IR.

Then neither interval addition nor multiplication is associative.
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Th. 1 Let IB be admissible and {0}, {1}, {α}, {1/α} ∈ IB for 0 < α ∈ IR.

Then neither interval addition nor multiplication is associative.

Th. 2 Let IB be weakly admissible with {0} ∈ IB. Then

A · B = ~0, 0� ⇔ A = ~0, 0� or B = ~0, 0� .
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Interval arithmetic over finitely many bounds: Theorems I

Th. 1 Let IB be admissible and {0}, {1}, {α}, {1/α} ∈ IB for 0 < α ∈ IR.

Then neither interval addition nor multiplication is associative.

Th. 2 Let IB be weakly admissible with {0} ∈ IB. Then

A · B = ~0, 0� ⇔ A = ~0, 0� or B = ~0, 0� .

Th. 3 Let IB be weakly admissible. Then

α ◦ β ∈ ♦(α) ◦ ♦(β) for ◦ ∈ {+,−, ·} and all α, β ∈ IR

is true if and only if IB is admissible.
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Interval arithmetic over finitely many bounds: Theorems I

Th. 1 Let IB be admissible and {0}, {1}, {α}, {1/α} ∈ IB for 0 < α ∈ IR.

Then neither interval addition nor multiplication is associative.

Th. 2 Let IB be weakly admissible with {0} ∈ IB. Then

A · B = ~0, 0� ⇔ A = ~0, 0� or B = ~0, 0� .

Th. 3 Let IB be weakly admissible. Then

α ◦ β ∈ ♦(α) ◦ ♦(β) for ◦ ∈ {+,−, ·} and all α, β ∈ IR

is true if and only if IB is admissible.

Note that division is excluded. Problem: 0 ∈ �(β) for β , 0.
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Interval arithmetic over finitely many bounds: Theorems II

IB is called dense around ρ ∈ IR if there are t1, t2 ∈ IB with

sup t1 = inf t2 = ρ and ρ < t1 ∪ t2.
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IB is called dense around ρ ∈ IR if there are t1, t2 ∈ IB with

sup t1 = inf t2 = ρ and ρ < t1 ∪ t2.

Note {ρ} may be an element of IB or not.
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Interval arithmetic over finitely many bounds: Theorems II

IB is called dense around ρ ∈ IR if there are t1, t2 ∈ IB with

sup t1 = inf t2 = ρ and ρ < t1 ∪ t2.

Note {ρ} may be an element of IB or not.

Th. 4 Let IB be admissible. Then

α ◦ β ∈ ♦(α) ◦ ♦(β)
for ◦ ∈ {+,−, ·, /} and all α, β ∈ IR,
β , 0 in case of division,

if and only if IB is dense around 0.
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Interval arithmetic over finitely many bounds: Theorems II

IB is called dense around ρ ∈ IR if there are t1, t2 ∈ IB with

sup t1 = inf t2 = ρ and ρ < t1 ∪ t2.

Note {ρ} may be an element of IB or not.

Th. 4 Let IB be admissible. Then

α ◦ β ∈ ♦(α) ◦ ♦(β)
for ◦ ∈ {+,−, ·, /} and all α, β ∈ IR,
β , 0 in case of division,

if and only if IB is dense around 0.

Th. 5 Let IB be admissible and dense around 0. Then for A, B , ∅,

0 ∈ A · B ⇔ 0 ∈ A or 0 ∈ B .
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Interval arithmetic over finitely many bounds: Theorems III

Th. 6 Let IB be admissible, and IR−0 < IB, B , ∅, 0 < B be given. Then

0 ∈ A/B ⇔ 0 ∈ A

if and only if IB is dense around 0.
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Interval arithmetic over finitely many bounds: Theorems III

Th. 6 Let IB be admissible, and IR−0 < IB, B , ∅, 0 < B be given. Then

0 ∈ A/B ⇔ 0 ∈ A

if and only if IB is dense around 0.

Th. 7 Let IB be admissible and dense around 0. Then

0 ∈ A − B ⇔ A ∩ B , ∅ .
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Interval arithmetic over finitely many bounds: Theorems III

Th. 6 Let IB be admissible, and IR−0 < IB, B , ∅, 0 < B be given. Then

0 ∈ A/B ⇔ 0 ∈ A

if and only if IB is dense around 0.

Th. 7 Let IB be admissible and dense around 0. Then

0 ∈ A − B ⇔ A ∩ B , ∅ .

Th. 8 Let IB be admissible and IR−0 < IB. Then

B ⊆ A/(A/B) for all A , ∅ with 0 < A ∪ B

if and only if IB is dense around 0.



21/24

JJ
II
J
I

Back

Close

Interval arithmetic over finitely many bounds: Properties

For admissible IB being dense around 0 it follows

0 ∈ A − B ⇔ A ∩ B , ∅
0 ∈ A · B ⇔ 0 ∈ A ∪ B
A ⊆ B/(B/A) if 0 < A ∪ B

avoiding problems with underflow, and
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Interval arithmetic over finitely many bounds: Properties

For admissible IB being dense around 0 it follows

0 ∈ A − B ⇔ A ∩ B , ∅
0 ∈ A · B ⇔ 0 ∈ A ∪ B
A ⊆ B/(B/A) if 0 < A ∪ B

avoiding problems with underflow, and

α ∈ interval(α)
[α, β] = hull(interval(α), interval(β))
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Interval arithmetic over finitely many bounds: Properties

For admissible IB being dense around 0 it follows

0 ∈ A − B ⇔ A ∩ B , ∅
0 ∈ A · B ⇔ 0 ∈ A ∪ B
A ⊆ B/(B/A) if 0 < A ∪ B

avoiding problems with underflow, and

α ∈ interval(α)
[α, β] = hull(interval(α), interval(β))

or A ⊆ log(exp(A)) for any interval A ,

all without exception flag.
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Interval arithmetic over finitely many bounds: Properties

For admissible IB being dense around 0 it follows

0 ∈ A − B ⇔ A ∩ B , ∅
0 ∈ A · B ⇔ 0 ∈ A ∪ B
A ⊆ B/(B/A) if 0 < A ∪ B

avoiding problems with underflow, and

α ∈ interval(α)
[α, β] = hull(interval(α), interval(β))

or A ⊆ log(exp(A)) for any interval A ,

all without exception flag.

Despite IB being admissible and dense around 0 there is any freedom!
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Interval arithmetic over finitely many bounds: Examples

Define H := (realmax,∞) HUGE

T := (0, realmin) T INY
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Interval arithmetic over finitely many bounds: Examples

Define H := (realmax,∞) HUGE

T := (0, realmin) T INY

Then the set of interval bounds

IB := {{ f } : f ∈ IF} ∪ {−H,−T,T,H} is admissible and dense around 0 .
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Interval arithmetic over finitely many bounds: Examples

Define H := (realmax,∞) HUGE

T := (0, realmin) T INY

Then the set of interval bounds

IB := {{ f } : f ∈ IF} ∪ {−H,−T,T,H} is admissible and dense around 0 .

The main differences to the interval to-be standard IEEE P1788 are

1) ∞ is replaced by H and 2) T is introduced.
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Interval arithmetic over finitely many bounds: Examples

Define H := (realmax,∞) HUGE

T := (0, realmin) T INY

Then the set of interval bounds

IB := {{ f } : f ∈ IF} ∪ {−H,−T,T,H} is admissible and dense around 0 .

The main differences to the interval to-be standard IEEE P1788 are

1) ∞ is replaced by H and 2) T is introduced.

Where is the beef?
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Interval arithmetic over finitely many bounds: Examples

Define x = [0, 1000]. Conventionally exp(x) = [1,∞), but ...
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Interval arithmetic over finitely many bounds: Examples

Define x = [0, 1000]. Conventionally exp(x) = [1,∞), but ...

1/ exp(−x) = 1/[0, 1] = [1,∞) with flag, or = NaI .
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Interval arithmetic over finitely many bounds: Examples

Define x = [0, 1000]. Conventionally exp(x) = [1,∞), but ...

1/ exp(−x) = 1/[0, 1] = [1,∞) with flag, or = NaI .

New 1/ exp(−x) = 1/~T, 1� = ~1,H� = exp(x) without exception .
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Interval arithmetic over finitely many bounds: Examples

Define x = [0, 1000]. Conventionally exp(x) = [1,∞), but ...

1/ exp(−x) = 1/[0, 1] = [1,∞) with flag, or = NaI .

New 1/ exp(−x) = 1/~T, 1� = ~1,H� = exp(x) without exception .

Define x = [realmin, 1]. Then

Conventionally log(x2) = log([0, 1]) = (−∞, 0] with flag, or = NaI .
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Interval arithmetic over finitely many bounds: Examples

Define x = [0, 1000]. Conventionally exp(x) = [1,∞), but ...

1/ exp(−x) = 1/[0, 1] = [1,∞) with flag, or = NaI .

New 1/ exp(−x) = 1/~T, 1� = ~1,H� = exp(x) without exception .

Define x = [realmin, 1]. Then

Conventionally log(x2) = log([0, 1]) = (−∞, 0] with flag, or = NaI .

New log(x2) = log(~T, 1�) = ~−H, 0� without exception .
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Interval arithmetic over finitely many bounds: Examples

Define x = [0, 1000]. Conventionally exp(x) = [1,∞), but ...

1/ exp(−x) = 1/[0, 1] = [1,∞) with flag, or = NaI .

New 1/ exp(−x) = 1/~T, 1� = ~1,H� = exp(x) without exception .

Define x = [realmin, 1]. Then

Conventionally log(x2) = log([0, 1]) = (−∞, 0] with flag, or = NaI .

New log(x2) = log(~T, 1�) = ~−H, 0� without exception .

New log(exp(~−H,H�)) = log(~T,H�) = ~−H,H�

etc.
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Interval arithmetic over finitely many bounds: Additional quantities

Add 1− =
{
(pred(1), 1)

}
and 1+ =

{
(1, succ(1)

}
to IB. Then
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Interval arithmetic over finitely many bounds: Additional quantities

Add 1− =
{
(pred(1), 1)

}
and 1+ =

{
(1, succ(1)

}
to IB. Then

tanh(~0, 30�) = ~0, 1−�, 1 − ~0, 1−� = ~T, 1� .
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Interval arithmetic over finitely many bounds: Additional quantities

Add 1− =
{
(pred(1), 1)

}
and 1+ =

{
(1, succ(1)

}
to IB. Then

tanh(~0, 30�) = ~0, 1−�, 1 − ~0, 1−� = ~T, 1� .

Add E = {e} to IB. Then
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Interval arithmetic over finitely many bounds: Additional quantities

Add 1− =
{
(pred(1), 1)

}
and 1+ =

{
(1, succ(1)

}
to IB. Then

tanh(~0, 30�) = ~0, 1−�, 1 − ~0, 1−� = ~T, 1� .

Add E = {e} to IB. Then

exp(log(~1,E�)) = ~1,E� and log(~E,E�) = ~1, 1� .
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Interval arithmetic over finitely many bounds: Additional quantities

Add 1− =
{
(pred(1), 1)

}
and 1+ =

{
(1, succ(1)

}
to IB. Then

tanh(~0, 30�) = ~0, 1−�, 1 − ~0, 1−� = ~T, 1� .

Add E = {e} to IB. Then

exp(log(~1,E�)) = ~1,E� and log(~E,E�) = ~1, 1� .

etc.

Reference:

S.M. Rump: Interval arithmetic over finitely many endpoints,

to appear in BIT, 2012.
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