## Interval arithmetic over finitely many endpoints

S.M. Rump, Hamburg/Tokyo

Summary:

Let a finite set $\mathbb{B}$ of interval bounds be given.
Which properties of $I B$ are necessary (and sufficient) such that an interval arithmetic over $\operatorname{B}$ satisfies as many as possible mathematical properties?

## The goal:

For intervals $A, B$ the following should be true without exception flag:

$$
\begin{array}{ll}
0 \in A-B \Leftrightarrow & A \cap B \neq \emptyset \\
0 \in A \cdot B \Leftrightarrow & 0 \in A \cup B \\
A \subseteq B /(B / A) & \text { if } 0 \notin A \cup B
\end{array}
$$

avoiding problems with underflow, and

## The goal:

For intervals $A, B$ the following should be true without exception flag:

$$
\begin{array}{ll}
0 \in A-B \Leftrightarrow & A \cap B \neq \emptyset \\
0 \in A \cdot B \Leftrightarrow & 0 \in A \cup B \\
A \subseteq B /(B / A) & \text { if } 0 \notin A \cup B
\end{array}
$$

avoiding problems with underflow, and
$\alpha \in \operatorname{interval}(\alpha)$
$[\alpha, \beta]=\operatorname{hull}(\operatorname{interval}(\alpha), \operatorname{interval}(\beta))$

## The goal:

For intervals $A, B$ the following should be true without exception flag:

$$
\begin{array}{ll}
0 \in A-B \Leftrightarrow & A \cap B \neq \emptyset \\
0 \in A \cdot B \Leftrightarrow & 0 \in A \cup B \\
A \subseteq B /(B / A) & \text { if } 0 \notin A \cup B
\end{array}
$$

avoiding problems with underflow, and

```
\alpha\in interval( }\alpha
[\alpha,\beta] = hull(interval(\alpha), interval(\beta))
or }A\subseteq\operatorname{log}(\operatorname{exp}(A))\quad\mathrm{ for any }A\quad\mathrm{ without exception flag
```

for finitely many interval bounds .
or $\quad A \subseteq \log (\exp (A)) \quad$ for any $A \quad$ without exception flag

Start with real bounds $a, b, c, d \in \mathbb{R}$ and define

$$
\begin{aligned}
& {[a, b]+[c, d]=[a+c, b+d]} \\
& {[a, b] \cdot[c, d]=[\min (a c, a d, b c, b d), \max (a c, a d, b c, b d)]}
\end{aligned}
$$ etc.

Start with real bounds $a, b, c, d \in \mathbb{R}$ and define

$$
\begin{aligned}
& {[a, b]+[c, d]=[a+c, b+d]} \\
& {[a, b] \cdot[c, d]=[\min (a c, a d, b c, b d), \max (a c, a d, b c, b d)]} \\
& \text { etc. }
\end{aligned}
$$

Note the interval bounds are real numbers.

Start with real bounds $a, b, c, d \in \mathbb{R}$ and define

$$
\begin{aligned}
& {[a, b]+[c, d]=[a+c, b+d]} \\
& {[a, b] \cdot[c, d]=[\min (a c, a d, b c, b d), \max (a c, a d, b c, b d)]} \\
& \text { etc. }
\end{aligned}
$$

Note the interval bounds are real numbers.

Define $\nabla, \Delta: \mathbb{R} \rightarrow \mathbb{F}$

Start with real bounds $a, b, c, d \in \mathbb{R}$ and define

$$
\begin{aligned}
& {[a, b]+[c, d]=[a+c, b+d]} \\
& {[a, b] \cdot[c, d]=[\min (a c, a d, b c, b d), \max (a c, a d, b c, b d)]} \\
& \text { etc. }
\end{aligned}
$$

Note the interval bounds are real numbers.

## Define $\nabla, \Delta: \mathbb{R} \rightarrow \mathbb{F}$

and continue with floating-point bounds $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d} \in \mathbb{F}$ :

$$
[\tilde{a}, \tilde{b}]+[\tilde{c}, \tilde{d}]=[\nabla(\tilde{a}+\tilde{c}), \Delta(\tilde{b}+\tilde{d})]
$$

etc.

## Treatment of overflow

To cover overflow, an extension $\nabla, \Delta: \mathbb{R} \rightarrow \mathbb{F}^{*}$
with $\mathbb{F}^{*}:=\mathbb{F} \cup\{-\infty, \infty\}$ is mandatory ( $\Rightarrow$ exception-free).

## Treatment of overflow

To cover overflow, an extension $\nabla, \Delta: \mathbb{R} \rightarrow \mathbb{F}^{*}$ with $\mathbb{F}^{*}:=\mathbb{F} \cup\{-\infty, \infty\}$ is mandatory ( $\Rightarrow$ exception-free).

This allows verified floating-point bounds for $x \circ y$ or $f(x)$ for all real $x, y$, also in case of overflow.

## Treatment of overflow

To cover overflow, an extension $\nabla, \Delta: \mathbb{R} \rightarrow \mathbb{F}^{*}$ with $\mathbb{F}^{*}:=\mathbb{F} \cup\{-\infty, \infty\}$ is mandatory ( $\Rightarrow$ exception-free).

This allows verified floating-point bounds for $x \circ y$ or $f(x)$ for all real $x, y$, also in case of overflow.

The range of an interval is defined to be a subset of $\mathbb{R}$.

## Treatment of overflow

To cover overflow, an extension $\nabla, \Delta: \mathbb{R} \rightarrow \mathbb{F}^{*}$ with $\mathbb{F}^{*}:=\mathbb{F} \cup\{-\infty, \infty\}$ is mandatory ( $\Rightarrow$ exception-free).

This allows verified floating-point bounds for $x \circ y$ or $f(x)$ for all real $x, y$, also in case of overflow.

The range of an interval is defined to be a subset of $\mathbb{R}$.

This implies the appealing property
$0 \cdot x=[0,0]$ for all intervals $x$.

## Treatment of overflow

To cover overflow, an extension $\nabla, \Delta: \mathbb{R} \rightarrow \mathbb{F}^{*}$ with $\mathbb{F}^{*}:=\mathbb{F} \cup\{-\infty, \infty\}$ is mandatory ( $\Rightarrow$ exception-free).

This allows verified floating-point bounds for $x \circ y$ or $f(x)$ for all real $x, y$, also in case of overflow.

The range of an interval is defined to be a subset of $\mathbb{R}$.

This implies the appealing property

$$
0 \cdot x=[0,0] \text { for all intervals } x .
$$

So far, so good.

## Infinite bounds - an abuse?

Now $x=\exp ([0,1000])=[1, \infty)$ in IEEE 754,

Now $x=\exp ([0,1000])=[1, \infty)$ in IEEE 754,
so naturally $\inf (x)=1$ and $\sup (x)=\infty$.

| $\uparrow$ |
| :---: |
| $\downarrow$ |
| $\checkmark$ |
| $\downarrow$ |
| Back |
| Close |

Now $x=\exp ([0,1000])=[1, \infty)$ in IEEE 754,
so naturally $\inf (x)=1$ and $\sup (x)=\infty$.

Since $x \subseteq \mathbb{R}$ for all intervals $x$, it seems natural to define interval $(\infty):=\emptyset$.

## Unexpected, wrong results I

Consider

$$
f(x)=\frac{10 x+5}{\left(e^{x}\right)^{3}}-1 .
$$

| 4 |
| :---: |
| $\rightarrow$ |
| 4 |
| $~ B$ |
| Back |
| Close |

## Unexpected, wrong results I

Consider

$$
f(x)=\frac{10 x+5}{\left(e^{x}\right)^{3}}-1 .
$$

cube $(x):=x^{3}$ is monotone over $\mathbb{R}$, suggesting the implementation

```
function yy = cube(xx)
    xxinf = num2interval(inf(xx)); yyinf = xxinf*xxinf*xxinf;
    xxsup = num2interval(sup(xx)); yysup = xxsup*xxsup*xxsup;
    yy = convexHull(yyinf,yysup);
```


## Unexpected, wrong results I

Consider

$$
f(x)=\frac{10 x+5}{\left(e^{x}\right)^{3}}-1 .
$$

cube $(x):=x^{3}$ is monotone over $\mathbb{R}$, suggesting the implementation

```
function yy = cube(xx)
    xxinf = num2interval(inf(xx)); yyinf = xxinf*xxinf*xxinf;
    xxsup = num2interval(sup(xx)); yysup = xxsup*xxsup*xxsup;
    yy = convexHull(yyinf,yysup);
```

Then $\mathrm{zz}=\mathrm{f}$ (nums2interval $(0,1000)$ ) yields $\mathrm{zz}=[4,10004]$,
suggesting $f$ has no positive real root

## Unexpected, wrong results I

Consider

$$
f(x)=\frac{10 x+5}{\left(e^{x}\right)^{3}}-1 .
$$

cube $(x):=x^{3}$ is monotone over $\mathbb{R}$, suggesting the implementation

```
function yy = cube(xx)
    xxinf = num2interval(inf(xx)); yyinf = xxinf*xxinf*xxinf;
    xxsup = num2interval(sup(xx)); yysup = xxsup*xxsup*xxsup;
    yy = convexHull(yyinf,yysup);
```

Then $\mathrm{zz}=\mathrm{f}$ (nums2interval $(0,1000)$ ) yields $\mathrm{zz}=[4,10004]$,
suggesting $f$ has no positive real root
without error message! But ...

## Unexpected, wrong results II

... there is a positive root: Graph of $f$ between -0.6 and 3


Unexpected, wrong results III

As before, $z z=$ nums2interval $(0,1000)$ implies $x x=\exp (z z)=[1, \infty)$

## Unexpected, wrong results III

As before, $\mathrm{zz}=$ nums2interval $(0,1000)$ implies $\mathrm{xx}=\exp (\mathrm{zz})=[1, \infty)$
$\Rightarrow$ xxsup $=$ num2interval $(\sup (x x))=\emptyset$

## Unexpected, wrong results III

As before, $z z=$ nums2interval $(0,1000)$ implies $x x=\exp (z z)=[1, \infty)$
$\Rightarrow$ xxsup $=$ num2interval $(\sup (x x))=\emptyset$
hence

$$
\left(e^{[0,1000]}\right)^{3} \subseteq \operatorname{cube}(\exp (\text { nums2interval }(0,1000)))=[1,1],
$$

a fatal mistake.

Unexpected, wrong results IV

This semantic error is tracked by the nonstandardNumber flag.

## Unexpected, wrong results IV

This semantic error is tracked by the nonstandardNumber flag.

However, Neumaier writes in his Vienna-proposal:
"The semantic error would probably be caught easily on debugging even without the flag, since instead of a wide result something very narrow is returned."

## Unexpected, wrong results IV

This semantic error is tracked by the nonstandardNumber flag.

However, Neumaier writes in his Vienna-proposal:
"The semantic error would probably be caught easily on debugging even without the flag, since instead of a wide result something very narrow is returned."

And he admits:
"I expect that the nonstandardNumber flag will never be inspected, except for debugging purposes."

## Unexpected, wrong results IV

This semantic error is tracked by the nonstandardNumber flag.

However, Neumaier writes in his Vienna-proposal:
"The semantic error would probably be caught easily on debugging even without the flag, since instead of a wide result something very narrow is returned."

And he admits:
"I expect that the nonstandardNumber flag will never be inspected, except for debugging purposes."

However, debugging requires a suspicion (in the example $f$ (nums2interval $(0,1000)$ ) $\subseteq[4,10004]$ ).

## Definition of directed rounding I

Clearly $\Delta(r)=\min \{f \in \mathbb{F}: r \leq f\}$ for $r \in \mathbb{R}$.

Definition of directed rounding I

Clearly $\Delta(r)=\min \{f \in \mathbb{F}: r \leq f\}$ for $r \in \mathbb{R}$.

What about $\Delta( \pm \infty)$ ?

Definition of directed rounding I

Clearly $\Delta(r)=\min \{f \in \mathbb{F}: r \leq f\}$ for $r \in \mathbb{R}$.

What about $\Delta( \pm \infty)$ ?

A natural definition is

$$
\Delta(r)=\min \{f \in \mathbb{F}: r \leq f\} \text { for } r \in \mathbb{R}^{*} \quad \text { with } \quad \min (\emptyset)=\infty,
$$

a common definition in optimization.

Definition of directed rounding I

Clearly $\Delta(r)=\min \{f \in \mathbb{F}: r \leq f\}$ for $r \in \mathbb{R}$.

What about $\Delta( \pm \infty)$ ?

A natural definition is

$$
\Delta(r)=\min \{f \in \mathbb{F}: r \leq f\} \text { for } r \in \mathbb{R}^{*} \quad \text { with } \quad \min (\emptyset)=\infty,
$$

a common definition in optimization.

In other words, if there is no $f$ with $r \leq f$, then the result is $\infty$.

Definition of directed rounding I

Clearly $\Delta(r)=\min \{f \in \mathbb{F}: r \leq f\}$ for $r \in \mathbb{R}$.

What about $\Delta( \pm \infty)$ ?

A natural definition is

$$
\Delta(r)=\min \{f \in \mathbb{F}: r \leq f\} \text { for } r \in \mathbb{R}^{*} \quad \text { with } \quad \min (\emptyset)=\infty,
$$

a common definition in optimization.

In other words, if there is no $f$ with $r \leq f$, then the result is $\infty$.
Moreover, $\nabla(r)=-\Delta(-r)$.

Definition of directed rounding II

The natural definition num2interval $(\mathrm{r})=[\nabla(r), \Delta(r)]$ for $r \in \mathbb{R}^{*}$ implies
num2interval $(\infty)=($ realmax,$\infty]$

Definition of directed rounding II

The natural definition num2interval $(r)=[\nabla(r), \Delta(r)]$ for $r \in \mathbb{R}^{*}$ implies

```
num2interval(\infty) = (realmax, \infty]
```

Hence

$$
\left(e^{[0,1000]}\right)^{3} \subseteq \operatorname{cube}(\exp (\text { nums } 2 \text { interval }(0,1000)))=[1, \infty)
$$

Definition of directed rounding II

The natural definition num2interval $(r)=[\nabla(r), \Delta(r)]$ for $r \in \mathbb{R}^{*}$ implies

```
num2interval( }\infty)=(\mathrm{ realmax, }\infty\mathrm{ ]
```

Hence

$$
\left(e^{[0,1000]}\right)^{3} \subseteq \operatorname{cube}(\exp (\text { nums } 2 \text { interval }(0,1000)))=[1, \infty)
$$

Moreover, a best possible real interval $\left[r_{1}, r_{2}\right]$ is rounded into the best possible floating-point interval $\left[\nabla\left(r_{1}\right), \Delta\left(r_{2}\right)\right]$,
which may serve to define all interval operations including functions.

Drawbacks of the popular definition of interval arithmetic

1) The apparent unsymmetry between overflow and underflow:

Drawbacks of the popular definition of interval arithmetic

1) The apparent unsymmetry between overflow and underflow:

$$
[0, \text { realmax }]+1=[1, \infty)=: x x \text { with } \infty \notin x x \text {, but }
$$

1) The apparent unsymmetry between overflow and underflow:

$$
\begin{aligned}
& {[0, \text { realmax }]+1=[1, \infty)=: x x \text { with } \infty \notin x x, \text { but }} \\
& 1 / x x=[0,1]=: y y \text { with } 0 \in y y .
\end{aligned}
$$

1) The apparent unsymmetry between overflow and underflow:

$$
\begin{aligned}
& {[0, \text { realmax }]+1=[1, \infty)=: x x \text { with } \infty \notin x x, \text { but }} \\
& 1 / x x=[0,1]=: y y \text { with } 0 \in y y .
\end{aligned}
$$

Define Huge and Tiny ?

Drawbacks of the popular definition of interval arithmetic

1) The apparent unsymmetry between overflow and underflow:

$$
\begin{aligned}
& {[0, \text { realmax }]+1=[1, \infty)=: x x \text { with } \infty \notin x x, \text { but }} \\
& 1 / x x=[0,1]=: y y \text { with } 0 \in y y .
\end{aligned}
$$

Define Huge and Tiny ?
2) A two-step definition: First intervals over $\mathbb{R}$, then over $\mathbb{F}$.

Drawbacks of the popular definition of interval arithmetic

1) The apparent unsymmetry between overflow and underflow:

$$
\begin{aligned}
& {[0, \text { realmax }]+1=[1, \infty)=: x x \text { with } \infty \notin x x, \text { but }} \\
& 1 / x x=[0,1]=: y y \text { with } 0 \in y y .
\end{aligned}
$$

Define Huge and Tiny ?
2) A two-step definition: First intervals over $\mathbb{R}$, then over $\mathbb{F}$.

Is it advantageous to define intervals directly over $\mathbb{F}$ ?

1) The apparent unsymmetry between overflow and underflow:

$$
\begin{aligned}
& {[0, \text { realmax }]+1=[1, \infty)=: x x \text { with } \infty \notin x x, \text { but }} \\
& 1 / x x=[0,1]=: y y \text { with } 0 \in y y .
\end{aligned}
$$

Define Huge and Tiny ?
2) A two-step definition: First intervals over $\mathbb{R}$, then over $\mathbb{F}$.

Is it advantageous to define intervals directly over $\mathbb{F}$ ?
3) Not necessarily $\inf (x x), \sup (x x) \in x x$ for intervals $x x$.

The role of $\infty$ in numerical analysis

I claim

The role of $\infty$ in numerical analysis

I claim
If $\infty$ occurs in a numerical computation, then in the
vast majority of all cases it stems from an overflow.

The role of $\infty$ in numerical analysis

I claim
If $\infty$ occurs in a numerical computation, then in the
vast majority of all cases it stems from an overflow.

In other words, $\infty$ is ( $a b$ )used to express something "huge", not infinity.

The role of $\infty$ in numerical analysis

I claim
If $\infty$ occurs in a numerical computation, then in the
vast majority of all cases it stems from an overflow.

In other words, $\infty$ is ( $a b$ )used to express something "huge", not infinity.
A true $\infty$, like $\log (0)$, is most likely an error.

The role of $\infty$ in numerical analysis

I claim
If $\infty$ occurs in a numerical computation, then in the
vast majority of all cases it stems from an overflow.

In other words, $\infty$ is ( $a b$ )used to express something "huge", not infinity.
A true $\infty$, like $\log (0)$, is most likely an error.

Typical examples are
$\exp (1000), 2$ realmax, etc.
but not $1 / 0, \cot (0)$, etc.

## The role of $\infty$ in numerical analysis

I claim
If $\infty$ occurs in a numerical computation, then in the
vast majority of all cases it stems from an overflow.

In other words, $\infty$ is ( $a b$ )used to express something "huge", not infinity.
A true $\infty$, like $\log (0)$, is most likely an error.

Typical examples are
$\exp (1000), 2 \cdot$ realmax, etc.
but not $1 / 0, \cot (0)$, etc.
[An exception is infeasibility in optimization, please ask later.]

Rather than just defining some new rounding or interval arithmetic, we aim on a mathematical foundation.

Interval arithmetic over finitely many bounds

Interval arithmetic over finitely many bounds

IIIR the set of $\mathbb{R}$-intervals are non-empty, connected subsets of $\mathbb{R}$. E.g. $[-2, \pi],(0,1]$ or $(-\infty, \sqrt{2})$.

Interval arithmetic over finitely many bounds
$\operatorname{IIR}$ the set of $\mathbb{R}$-intervals are non-empty, connected subsets of $\mathbb{R}$. E.g. $[-2, \pi],(0,1]$ or $(-\infty, \sqrt{2})$.
$\mathrm{IB}=\left\{b_{1}, \ldots, b_{k}\right\}$ is a weakly admissible set of interval bounds $b_{i} \in \operatorname{IIR} \mathrm{iff}$

$$
\alpha \in b_{i}, \beta \in b_{i+1} \quad \Rightarrow \quad \alpha<\beta \quad \text { for } 1 \leq i<k .
$$

$\operatorname{IIR}$ the set of $\mathbb{R}$-intervals are non-empty, connected subsets of $\mathbb{R}$. E.g. $[-2, \pi],(0,1]$ or $(-\infty, \sqrt{2})$.
$\mathrm{IB}=\left\{b_{1}, \ldots, b_{k}\right\}$ is a weakly admissible set of interval bounds $b_{i} \in \operatorname{IIR} \mathrm{iff}$

$$
\alpha \in b_{i}, \beta \in b_{i+1} \quad \Rightarrow \quad \alpha<\beta \quad \text { for } 1 \leq i<k .
$$

$\mathbb{B}=\left\{b_{1}, \ldots, b_{k}\right\}$ is totally ordered by $b_{i} \leq b_{j} \quad$ for $1 \leq i \leq j \leq k$.

Interval arithmetic over finitely many bounds
$\operatorname{IIR}$ the set of $\mathbb{R}$-intervals are non-empty, connected subsets of $\mathbb{R}$. E.g. $[-2, \pi],(0,1]$ or $(-\infty, \sqrt{2})$.
$\mathrm{B}=\left\{b_{1}, \ldots, b_{k}\right\}$ is a weakly admissible set of interval bounds $b_{i} \in \operatorname{IIR}$ iff

$$
\alpha \in b_{i}, \beta \in b_{i+1} \quad \Rightarrow \quad \alpha<\beta \quad \text { for } 1 \leq i<k .
$$

$\mathrm{IB}=\left\{b_{1}, \ldots, b_{k}\right\}$ is totally ordered by $b_{i} \leq b_{j} \quad$ for $1 \leq i \leq j \leq k$.
$\mathbb{B}=\left\{b_{1}, \ldots, b_{k}\right\}$ is an admissible set of interval bounds iff $\inf b_{1}=-\infty \quad$ and $\quad \sup b_{k}=\infty$.

Interval arithmetic over finitely many bounds
$\operatorname{IIR}$ the set of $\mathbb{R}$-intervals are non-empty, connected subsets of $\mathbb{R}$. E.g. $[-2, \pi],(0,1]$ or $(-\infty, \sqrt{2})$.
$\mathrm{B}=\left\{b_{1}, \ldots, b_{k}\right\}$ is a weakly admissible set of interval bounds $b_{i} \in \operatorname{IIR} \mathrm{iff}$

$$
\alpha \in b_{i}, \beta \in b_{i+1} \quad \Rightarrow \quad \alpha<\beta \quad \text { for } 1 \leq i<k .
$$

$\mathbb{B}=\left\{b_{1}, \ldots, b_{k}\right\}$ is totally ordered by $b_{i} \leq b_{j} \quad$ for $1 \leq i \leq j \leq k$.
$\mathbb{B}=\left\{b_{1}, \ldots, b_{k}\right\}$ is an admissible set of interval bounds iff $\inf b_{1}=-\infty \quad$ and $\quad \sup b_{k}=\infty$.

IIB $=\{\llbracket a, b \rrbracket: a, b \in \mathbb{B}, a \leq b\} \cup \emptyset$ the set of proper intervals.

## Interval arithmetic over finitely many bounds

$\mathrm{IIB}=\{\llbracket a, b \rrbracket: a, b \in \mathbb{B}, a \leq b\} \cup \emptyset$ the set of proper intervals.

Interval arithmetic over finitely many bounds

$$
\begin{aligned}
& \mathbb{I I B}=\{\llbracket a, b \rrbracket: a, b \in \mathbb{B}, a \leq b\} \cup \emptyset \quad \text { the set of proper intervals. } \\
& \operatorname{range}(\llbracket a, b \rrbracket)=a \cup b, \quad \operatorname{range}(\mathbb{I I B})=b_{1} \cup b_{k} .
\end{aligned}
$$

Interval arithmetic over finitely many bounds
$\mathrm{IIB}=\{\llbracket a, b \rrbracket: a, b \in \mathbb{B}, a \leq b\} \cup \emptyset$ the set of proper intervals.
$\operatorname{range}(\llbracket a, b \rrbracket)=a \underline{\cup} b, \quad \operatorname{range}(\mathbb{I I B})=b_{1} \underline{\cup} b_{k}$.

IIB is a complete lattice; $\quad \mathbb{B}$ admissible $\Leftrightarrow$ range $(\mathbb{B})=\mathbb{R}$.

Interval arithmetic over finitely many bounds
$\mathrm{IIB}=\{\llbracket a, b \rrbracket: a, b \in \mathbb{B}, a \leq b\} \cup \emptyset$ the set of proper intervals.
$\operatorname{range}(\llbracket a, b \rrbracket)=a \underline{\cup} b, \quad \operatorname{range}(\mathbb{I I B})=b_{1} \underline{\cup} b_{k}$.

IIB is a complete lattice; $\quad \mathbb{B}$ admissible $\Leftrightarrow$ range $(\mathbb{B})=\mathbb{R}$.

Interval operations $\circ: \mathrm{IIIB} \times$ IIB $\rightarrow$ IIB for $\circ \in\{+,-, \cdot, /\}$ are defined by

$$
A \circ B:=\bigcap\{C \in \operatorname{IIB}: \alpha \circ \beta \in C \text { for all } \alpha \in A, \beta \in B\}
$$

Interval arithmetic over finitely many bounds
$\mathrm{IIB}=\{\llbracket a, b \rrbracket: a, b \in \mathbb{B}, a \leq b\} \cup \emptyset$ the set of proper intervals.
$\operatorname{range}(\llbracket a, b \rrbracket)=a \underline{\cup} b, \quad$ range $(I I I B)=b_{1} \underline{\cup} b_{k}$.

IIB is a complete lattice; $\quad \mathbb{B}$ admissible $\Leftrightarrow$ range $(\mathbb{B})=\mathbb{R}$.

Interval operations $\circ: \mathrm{IIIB} \times \mathrm{IIIB} \rightarrow$ IIB for $\circ \in\{+,-, \cdot, /\}$ are defined by

$$
A \circ B:=\bigcap\{C \in \operatorname{IIB}: \alpha \circ \beta \in C \text { for all } \alpha \in A, \beta \in B\}
$$

Define $\diamond: \mathbb{R} \rightarrow$ IIIB with $\diamond(\xi):=\bigcap\{C \in \operatorname{IIB}: \xi \in C\}$

Interval arithmetic over finitely many bounds
$\mathrm{IIB}=\{\llbracket a, b \rrbracket: a, b \in \mathbb{B}, a \leq b\} \cup \emptyset$ the set of proper intervals.
$\operatorname{range}(\llbracket a, b \rrbracket)=a \underline{\cup} b, \quad$ range $(I I I B)=b_{1} \underline{\cup} b_{k}$.

IIB is a complete lattice; $\quad \mathbb{B}$ admissible $\Leftrightarrow$ range $(\mathbb{B})=\mathbb{R}$.

Interval operations $\circ: \mathrm{IIIB} \times \mathrm{IIIB} \rightarrow$ IIB for $\circ \in\{+,-, \cdot, /\}$ are defined by

$$
A \circ B:=\bigcap\{C \in \operatorname{IIB}: \alpha \circ \beta \in C \text { for all } \alpha \in A, \beta \in B\}
$$

Define $\diamond: \mathbb{R} \rightarrow$ IIIB with $\diamond(\xi):=\bigcap\{C \in \operatorname{IIB}: \xi \in C\}$

Finally $\overline{\mathrm{IIB}}=\mathrm{IIIB} \cup\{\mathrm{NaI}\} ; \quad A / B=\mathrm{NaI}$ for $0 \in B$.

## Interval arithmetic over finitely many bounds: Examples

$\mathbb{B}:=\{\{f\}: f \in \mathbb{F}\}$ is weakly admissible.

Interval arithmetic over finitely many bounds: Examples
$\mathbb{B}:=\{\{f\}: f \in \mathbb{F}\}$ is weakly admissible.
$\mathbb{B}:=\{\{v\}: v \in \mathbb{N}, 4 \leq v \leq 9\} \underline{\cup}\{(-\infty, 0),[3.14,3.15],[20, \infty)\}$ is admissible.

Interval arithmetic over finitely many bounds: Examples
$\mathbb{B}:=\{\{f\}: f \in \mathbb{F}\}$ is weakly admissible.
$\mathbb{B}:=\{\{v\}: v \in \mathbb{N}, 4 \leq v \leq 9\} \underline{\cup}\{(-\infty, 0),[3.14,3.15],[20, \infty)\}$ is admissible.
$\mathbb{B}:=\left\{N, P_{0}\right\} \quad$ with $N=(-\infty, 0)$ and $P_{0}=[0, \infty)$ is admissible.

Interval arithmetic over finitely many bounds: Examples
$\mathbb{B}:=\{\{f\}: f \in \mathbb{F}\}$ is weakly admissible.
$\mathbb{B}:=\{\{v\}: v \in \mathbb{N}, 4 \leq v \leq 9\} \underline{\cup}\{(-\infty, 0),[3.14,3.15],[20, \infty)\}$ is admissible.

B := $\left\{N, P_{0}\right\} \quad$ with $N=(-\infty, 0)$ and $P_{0}=[0, \infty)$ is admissible.

$$
\text { But }(-5) / 3 \rightarrow \diamond(-5) / \diamond(3)=N / P_{0}=\mathrm{NaI} \text { and }(-5) / 3 \notin \diamond(-5) / \diamond(3) .
$$

$\mathbb{B}:=\{\{f\}: f \in \mathbb{F}\}$ is weakly admissible.
$\mathbb{B}:=\{\{v\}: v \in \mathbb{N}, 4 \leq v \leq 9\} \underline{\cup}\{(-\infty, 0),[3.14,3.15],[20, \infty)\}$ is admissible.

B := $\left\{N, P_{0}\right\} \quad$ with $N=(-\infty, 0)$ and $P_{0}=[0, \infty)$ is admissible.

$$
\text { But }(-5) / 3 \rightarrow \diamond(-5) / \diamond(3)=N / P_{0}=\mathrm{NaI} \text { and }(-5) / 3 \notin \diamond(-5) / \diamond(3) \text {. }
$$

$\mathbb{B}:=\{N, 0, P\} \quad$ with $N=(-\infty, 0)$ and $P=(0, \infty)$ is also admissible.

## Interval arithmetic over finitely many bounds: Examples

$\mathbb{B}:=\{\{f\}: f \in \mathbb{F}\}$ is weakly admissible.
$\mathbb{B}:=\{\{v\}: v \in \mathbb{N}, 4 \leq v \leq 9\} \underline{\cup}\{(-\infty, 0),[3.14,3.15],[20, \infty)\}$ is admissible.

B := $\left\{N, P_{0}\right\} \quad$ with $N=(-\infty, 0)$ and $P_{0}=[0, \infty)$ is admissible.
But $(-5) / 3 \rightarrow \diamond(-5) / \diamond(3)=N / P_{0}=N a I$ and $(-5) / 3 \notin \diamond(-5) / \diamond(3)$.

IB := $\{N, 0, P\} \quad$ with $N=(-\infty, 0)$ and $P=(0, \infty)$ is also admissible.
Then $(-5) / 3 \rightarrow \diamond(-5) / \diamond(3)=N / P=N$ and $(-5) / 3 \in \diamond(-5) / \diamond(3)$.

Th. 1 Let $\mathbb{B}$ be admissible and $\{0\},\{1\},\{\alpha\},\{1 / \alpha\} \in \mathbb{B}$ for $0<\alpha \in \mathbb{R}$.
Then neither interval addition nor multiplication is associative.

Th. 1 Let $\mathbb{B}$ be admissible and $\{0\},\{1\},\{\alpha\},\{1 / \alpha\} \in \mathbb{B}$ for $0<\alpha \in \mathbb{R}$.
Then neither interval addition nor multiplication is associative.

Th. 2 Let $\mathbb{B}$ be weakly admissible with $\{0\} \in \mathbb{B}$. Then

$$
A \cdot B=\llbracket 0,0 \rrbracket \quad \Leftrightarrow \quad A=\llbracket 0,0 \rrbracket \quad \text { or } \quad B=\llbracket 0,0 \rrbracket .
$$

Interval arithmetic over finitely many bounds: Theorems I

Th. 1 Let $\mathbb{B}$ be admissible and $\{0\},\{1\},\{\alpha\},\{1 / \alpha\} \in \mathbb{B}$ for $0<\alpha \in \mathbb{R}$.
Then neither interval addition nor multiplication is associative.

Th. 2 Let $\mathbb{B}$ be weakly admissible with $\{0\} \in \mathbb{B}$. Then

$$
A \cdot B=\llbracket 0,0 \rrbracket \quad \Leftrightarrow \quad A=\llbracket 0,0 \rrbracket \quad \text { or } \quad B=\llbracket 0,0 \rrbracket .
$$

Th. 3 Let IB be weakly admissible. Then

$$
\alpha \circ \beta \in \diamond(\alpha) \circ \diamond(\beta) \quad \text { for } \circ \in\{+,-, \cdot\} \text { and all } \alpha, \beta \in \mathbb{R}
$$

is true if and only if $\mathbb{B}$ is admissible.

Interval arithmetic over finitely many bounds: Theorems I

Th. 1 Let $\mathbb{B}$ be admissible and $\{0\},\{1\},\{\alpha\},\{1 / \alpha\} \in \mathbb{B}$ for $0<\alpha \in \mathbb{R}$.
Then neither interval addition nor multiplication is associative.

Th. 2 Let $\mathbb{B}$ be weakly admissible with $\{0\} \in \mathbb{B}$. Then

$$
A \cdot B=\llbracket 0,0 \rrbracket \quad \Leftrightarrow \quad A=\llbracket 0,0 \rrbracket \quad \text { or } \quad B=\llbracket 0,0 \rrbracket .
$$

Th. 3 Let $\mathbb{B}$ be weakly admissible. Then

$$
\alpha \circ \beta \in \diamond(\alpha) \circ \diamond(\beta) \quad \text { for } \circ \in\{+,-, \cdot\} \text { and all } \alpha, \beta \in \mathbb{R}
$$

is true if and only if $\mathbb{B}$ is admissible.

Note that division is excluded. Problem: $0 \in \diamond(\beta)$ for $\beta \neq 0$.

## Interval arithmetic over finitely many bounds: Theorems II

$\mathbb{B}$ is called dense around $\rho \in \mathbb{R}$ if there are $t_{1}, t_{2} \in \mathbb{B}$ with $\sup t_{1}=\inf t_{2}=\rho \quad$ and $\quad \rho \notin t_{1} \cup t_{2}$.

## Interval arithmetic over finitely many bounds: Theorems II

$\mathbb{B}$ is called dense around $\rho \in \mathbb{R}$ if there are $t_{1}, t_{2} \in \mathbb{B}$ with

$$
\sup t_{1}=\inf t_{2}=\rho \quad \text { and } \quad \rho \notin t_{1} \cup t_{2} .
$$

Note $\{\rho\}$ may be an element of $\mathbb{B}$ or not.
$\mathbb{B}$ is called dense around $\rho \in \mathbb{R}$ if there are $t_{1}, t_{2} \in \mathbb{B}$ with

$$
\sup t_{1}=\inf t_{2}=\rho \quad \text { and } \quad \rho \notin t_{1} \cup t_{2} .
$$

Note $\{\rho\}$ may be an element of $\mathbb{B}$ or not.

Th. 4 Let IB be admissible. Then

$$
\alpha \circ \beta \in \diamond(\alpha) \circ \diamond(\beta) \quad \begin{aligned}
& \text { for } \circ \in\{+,-, \cdot, /\} \text { and all } \\
& \beta \neq 0 \text { in case of division, }
\end{aligned}
$$

if and only if $\mathbb{B}$ is dense around 0 .

## Interval arithmetic over finitely many bounds: Theorems II

$\mathbb{B}$ is called dense around $\rho \in \mathbb{R}$ if there are $t_{1}, t_{2} \in \mathbb{B}$ with

$$
\sup t_{1}=\inf t_{2}=\rho \quad \text { and } \quad \rho \notin t_{1} \cup t_{2} .
$$

Note $\{\rho\}$ may be an element of $\mathbb{B}$ or not.

Th. 4 Let IB be admissible. Then

$$
\begin{array}{ll}
\alpha \circ \beta \in \diamond(\alpha) \circ \diamond(\beta) \quad \begin{array}{l}
\text { for } \circ \in\{+,-, \cdot, /\} \text { and all } \alpha, \beta \in \mathbb{R}, \\
\beta \neq 0 \text { in case of division, }
\end{array}
\end{array}
$$

if and only if $\mathbb{B}$ is dense around 0 .

Th. 5 Let $\mathbb{B}$ be admissible and dense around 0 . Then for $A, B \neq \emptyset$,

$$
0 \in A \cdot B \quad \Leftrightarrow \quad 0 \in A \quad \text { or } \quad 0 \in B
$$

Th. 6 Let $\mathbb{B}$ be admissible, and $\mathbb{R}_{0}^{-} \notin \mathbb{B}, B \neq \emptyset, 0 \notin B$ be given. Then

$$
0 \in A / B \quad \Leftrightarrow \quad 0 \in A
$$

if and only if $\mathbb{B}$ is dense around 0 .

Th. 6 Let $\mathbb{B}$ be admissible, and $\mathbb{R}_{0}^{-} \notin \mathbb{B}, B \neq \emptyset, 0 \notin B$ be given. Then

$$
0 \in A / B \quad \Leftrightarrow \quad 0 \in A
$$

if and only if $\mathbb{B}$ is dense around 0 .

Th. 7 Let $\mathbb{B}$ be admissible and dense around 0 . Then

$$
0 \in A-B \quad \Leftrightarrow \quad A \cap B \neq \emptyset .
$$

Th. 6 Let $\mathbb{B}$ be admissible, and $\mathbb{R}_{0}^{-} \notin \mathbb{B}, B \neq \emptyset, 0 \notin B$ be given. Then

$$
0 \in A / B \quad \Leftrightarrow \quad 0 \in A
$$

if and only if $\mathbb{B}$ is dense around 0 .

Th. 7 Let $\mathbb{B}$ be admissible and dense around 0 . Then

$$
0 \in A-B \quad \Leftrightarrow \quad A \cap B \neq \emptyset
$$

Th. 8 Let $\mathbb{B}$ be admissible and $\mathbb{R}_{0}^{-} \notin \mathbb{B}$. Then

$$
B \subseteq A /(A / B) \quad \text { for all } A \neq \emptyset \text { with } 0 \notin A \cup B
$$

if and only if $\mathbb{B}$ is dense around 0 .

Interval arithmetic over finitely many bounds: Properties

For admissible IB being dense around 0 it follows

$$
\begin{array}{ll}
0 \in A-B \Leftrightarrow A \cap B \neq \emptyset \\
0 \in A \cdot B \Leftrightarrow & 0 \in A \cup B \\
A \subseteq B /(B / A) & \text { if } 0 \notin A \cup B
\end{array}
$$

avoiding problems with underflow, and

For admissible IB being dense around 0 it follows

$$
\begin{array}{ll}
0 \in A-B \Leftrightarrow A \cap B \neq \emptyset \\
0 \in A \cdot B \Leftrightarrow & 0 \in A \cup B \\
A \subseteq B /(B / A) & \text { if } 0 \notin A \cup B
\end{array}
$$

avoiding problems with underflow, and

$$
\begin{aligned}
& \alpha \in \operatorname{interval}(\alpha) \\
& {[\alpha, \beta]=\operatorname{hull}(\operatorname{interval}(\alpha), \operatorname{interval}(\beta))}
\end{aligned}
$$

For admissible $\mathbb{B}$ being dense around 0 it follows

$$
\begin{array}{ll}
0 \in A-B \Leftrightarrow A \cap B \neq \emptyset \\
0 \in A \cdot B \Leftrightarrow & 0 \in A \cup B \\
A \subseteq B /(B / A) & \text { if } 0 \notin A \cup B
\end{array}
$$

avoiding problems with underflow, and

$$
\begin{aligned}
& \alpha \in \operatorname{interval}(\alpha) \\
& {[\alpha, \beta]=\operatorname{hull}(\operatorname{interval}(\alpha), \operatorname{interval}(\beta))} \\
& \text { or } \quad A \subseteq \log (\exp (A)) \quad \text { for any interval } A,
\end{aligned}
$$

all without exception flag.

For admissible $\mathbb{B}$ being dense around 0 it follows

$$
\begin{array}{ll}
0 \in A-B \Leftrightarrow & A \cap B \neq \emptyset \\
0 \in A \cdot B \Leftrightarrow & 0 \in A \cup B \\
A \subseteq B /(B / A) & \text { if } 0 \notin A \cup B
\end{array}
$$

avoiding problems with underflow, and

$$
\begin{aligned}
& \alpha \in \operatorname{interval}(\alpha) \\
& {[\alpha, \beta]=\operatorname{hull}(\operatorname{interval}(\alpha), \operatorname{interval}(\beta))} \\
& \text { or } \quad A \subseteq \log (\exp (A)) \quad \text { for any interval } A,
\end{aligned}
$$

all without exception flag.

Despite $\mathbb{B}$ being admissible and dense around 0 there is any freedom!

Interval arithmetic over finitely many bounds: Examples

$$
\text { Define } \begin{array}{rlrl}
H & :=(\text { realmax } \infty) \quad \text { HUGE } \\
T & :=(0, \text { realmin }) & \operatorname{TINY}
\end{array}
$$

Interval arithmetic over finitely many bounds: Examples

Define $H:=($ realmax, $\infty) \quad H U G E$

$$
T:=(0, \text { realmin }) \quad \text { TIN } Y
$$

Then the set of interval bounds
$\mathbb{B}:=\{\{f\}: f \in \mathbb{F}\} \cup\{-H,-T, T, H\}$ is admissible and dense around 0.

Interval arithmetic over finitely many bounds: Examples

Define $H:=($ realmax, $\infty) \quad H U G E$

$$
T:=(0, \text { realmin }) \quad \text { TIN } Y
$$

Then the set of interval bounds $\mathbb{B}:=\{\{f\}: f \in \mathbb{F}\} \cup\{-H,-T, T, H\}$ is admissible and dense around 0.

The main differences to the interval to-be standard IEEE P1788 are

1) $\infty$ is replaced by $H$ and $\quad$ 2) $T$ is introduced.

Interval arithmetic over finitely many bounds: Examples

Define $H:=($ realmax,$\infty) \quad H U G E$

$$
T:=(0, \text { realmin }) \quad \text { TIN } Y
$$

Then the set of interval bounds
$\mathbb{B}:=\{\{f\}: f \in \mathbb{F}\} \cup\{-H,-T, T, H\}$ is admissible and dense around 0.

The main differences to the interval to-be standard IEEE P1788 are

1) $\infty$ is replaced by $H$ and $\quad$ 2) $T$ is introduced.

Where is the beef?

Define $x=[0,1000]$. Conventionally $\exp (x)=[1, \infty)$, but $\ldots$

Define $x=[0,1000]$. Conventionally $\exp (x)=[1, \infty)$, but $\ldots$ $1 / \exp (-x)=1 /[0,1]=[1, \infty)$ with flag, or $=\mathrm{NaI}$.

Interval arithmetic over finitely many bounds: Examples

Define $x=[0,1000]$. Conventionally $\exp (x)=[1, \infty)$, but $\ldots$

$$
1 / \exp (-x)=1 /[0,1]=[1, \infty) \text { with flag, or }=\mathrm{NaI} .
$$

New $1 / \exp (-x)=1 / \llbracket T, 1 \rrbracket=\llbracket 1, H \rrbracket=\exp (x)$ without exception .

Define $x=[0,1000]$. Conventionally $\exp (x)=[1, \infty)$, but $\ldots$

$$
1 / \exp (-x)=1 /[0,1]=[1, \infty) \text { with flag, or }=\mathrm{NaI} .
$$

New $1 / \exp (-x)=1 / \llbracket T, 1 \rrbracket=\llbracket 1, H \rrbracket=\exp (x)$ without exception .

Define $x=[$ realmin, 1]. Then
Conventionally $\log \left(x^{2}\right)=\log ([0,1])=(-\infty, 0]$ with flag, or $=\mathrm{NaI}$.

Define $x=[0,1000]$. Conventionally $\exp (x)=[1, \infty)$, but $\ldots$

$$
1 / \exp (-x)=1 /[0,1]=[1, \infty) \text { with flag, or }=\mathrm{NaI} .
$$

New $1 / \exp (-x)=1 / \llbracket T, 1 \rrbracket=\llbracket 1, H \rrbracket=\exp (x)$ without exception .

Define $x=[$ realmin, 1]. Then
Conventionally $\log \left(x^{2}\right)=\log ([0,1])=(-\infty, 0]$ with flag, or $=\mathrm{NaI}$.
New $\log \left(x^{2}\right)=\log (\llbracket T, 1 \rrbracket)=\llbracket-H, 0 \rrbracket$ without exception .

Interval arithmetic over finitely many bounds: Examples

Define $x=[0,1000]$. Conventionally $\exp (x)=[1, \infty)$, but $\ldots$

$$
1 / \exp (-x)=1 /[0,1]=[1, \infty) \text { with flag, or }=\mathrm{NaI} .
$$

New $1 / \exp (-x)=1 / \llbracket T, 1 \rrbracket=\llbracket 1, H \rrbracket=\exp (x)$ without exception .

Define $x=[$ realmin, 1]. Then
Conventionally $\log \left(x^{2}\right)=\log ([0,1])=(-\infty, 0]$ with flag, or $=\mathrm{NaI}$.
New $\log \left(x^{2}\right)=\log (\llbracket T, 1 \rrbracket)=\llbracket-H, 0 \rrbracket$ without exception .

New $\quad \log (\exp (\llbracket-H, H \rrbracket))=\log (\llbracket T, H \rrbracket)=\llbracket-H, H \rrbracket$
etc.

Add $1^{-}=\{(\operatorname{pred}(1), 1)\}$ and $1^{+}=\{(1, \operatorname{succ}(1)\}$ to $\mathbb{B}$. Then

$$
\begin{gathered}
\text { Add } 1^{-}=\{(\operatorname{pred}(1), 1)\} \text { and } 1^{+}=\{(1, \operatorname{succ}(1)\} \text { to } \mathbb{B} . \text { Then } \\
\tanh (\llbracket 0,30 \rrbracket)=\llbracket 0,1^{-} \rrbracket, \quad 1-\llbracket 0,1^{-} \rrbracket=\llbracket T, 1 \rrbracket .
\end{gathered}
$$

$$
\begin{gathered}
\text { Add } 1^{-}=\{(\operatorname{pred}(1), 1)\} \text { and } 1^{+}=\{(1, \operatorname{succ}(1)\} \text { to } \mathbb{B} . \text { Then } \\
\tanh (\llbracket 0,30 \rrbracket)=\llbracket 0,1^{-} \rrbracket, \quad 1-\llbracket 0,1^{-} \rrbracket=\llbracket T, 1 \rrbracket .
\end{gathered}
$$

Add $E=\{e\}$ to $\mathbb{B}$. Then

$$
\begin{gathered}
\text { Add } 1^{-}=\{(\operatorname{pred}(1), 1)\} \text { and } 1^{+}=\{(1, \operatorname{succ}(1)\} \text { to } \mathbb{B} . \text { Then } \\
\tanh (\llbracket 0,30 \rrbracket)=\llbracket 0,1^{-} \rrbracket, \quad 1-\llbracket 0,1^{-} \rrbracket=\llbracket T, 1 \rrbracket .
\end{gathered}
$$

Add $E=\{e\}$ to $\mathbb{B}$. Then

$$
\exp (\log (\llbracket 1, E \rrbracket))=\llbracket 1, E \rrbracket \quad \text { and } \quad \log (\llbracket E, E \rrbracket)=\llbracket 1,1 \rrbracket .
$$

$$
\begin{gathered}
\text { Add } 1^{-}=\{(\operatorname{pred}(1), 1)\} \text { and } 1^{+}=\{(1, \operatorname{succ}(1)\} \text { to } \mathbb{B} . \text { Then } \\
\tanh (\llbracket 0,30 \rrbracket)=\llbracket 0,1^{-} \rrbracket, \quad 1-\llbracket 0,1^{-} \rrbracket=\llbracket T, 1 \rrbracket .
\end{gathered}
$$

Add $E=\{e\}$ to $\mathbb{B}$. Then

$$
\exp (\log (\llbracket 1, \mathrm{E} \rrbracket))=\llbracket 1, \mathrm{E} \rrbracket \quad \text { and } \quad \log (\llbracket \mathrm{E}, \mathrm{E} \rrbracket)=\llbracket 1,1 \rrbracket .
$$

etc.

Reference:
S.M. Rump: Interval arithmetic over finitely many endpoints, to appear in BIT, 2012.

