

1/24

Interval arithmetic over finitely many endpoints

S.M. Rump, Hamburg/Tokyo

Summary:

Let a finite set IB of interval *bounds* be given.

Which properties of **B** are necessary (and sufficient) such that an interval arithmetic over **B** satisfies as many as possible mathematical properties?

The goal:

For intervals A, B the following should be true without exception flag:

 $\begin{array}{ll} 0 \in A - B & \Leftrightarrow & A \cap B \neq \emptyset \\ 0 \in A \cdot B & \Leftrightarrow & 0 \in A \cup B \\ A \subseteq B/(B/A) & \text{if } 0 \notin A \cup B \end{array}$

avoiding problems with underflow, and

The goal:

For intervals A, B the following should be true without exception flag:

 $\begin{array}{ll} 0 \in A - B & \Leftrightarrow & A \cap B \neq \emptyset \\ 0 \in A \cdot B & \Leftrightarrow & 0 \in A \cup B \\ A \subseteq B/(B/A) & \text{if } 0 \notin A \cup B \end{array}$

avoiding problems with underflow, and

 $\alpha \in \text{interval}(\alpha)$ [α, β] = hull(interval(α), interval(β))

The goal:

For intervals A, B the following should be true without exception flag:

 $0 \in A - B \iff A \cap B \neq \emptyset$ $0 \in A \cdot B \iff 0 \in A \cup B$ $A \subseteq B/(B/A) \quad \text{if } 0 \notin A \cup B$

avoiding problems with underflow, and

 $\alpha \in \text{interval}(\alpha)$ [α, β] = hull(interval(α), interval(β))

or $A \subseteq \log(\exp(A))$ for any A

for finitely many interval bounds.

without exception flag

[a,b] + [c,d] = [a+c,b+d] $[a,b] \cdot [c,d] = [min(ac,ad,bc,bd), max(ac,ad,bc,bd)]$ etc.

$$[a, b] + [c, d] = [a + c, b + d]$$

 $[a, b] \cdot [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]$
etc.

Note the interval bounds are *real* numbers.

$$[a, b] + [c, d] = [a + c, b + d]$$

 $[a, b] \cdot [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]$
etc.

Note the interval bounds are *real* numbers.

Define $\nabla, \Delta : \mathbb{R} \to \mathbb{F}$

$$[a, b] + [c, d] = [a + c, b + d]$$

 $[a, b] \cdot [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]$
etc.

Note the interval bounds are *real* numbers.

Define $\nabla, \Delta : \mathbb{R} \to \mathbb{F}$

and continue with *floating-point bounds* $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d} \in \mathbb{F}$:

$$[\tilde{a}, \tilde{b}] + [\tilde{c}, \tilde{d}] = [\nabla(\tilde{a} + \tilde{c}), \Delta(\tilde{b} + \tilde{d})]$$

etc.

To cover overflow, an extension $\nabla, \Delta : \mathbb{R} \to \mathbb{I}\!F^*$

with $\mathbb{F}^* := \mathbb{F} \cup \{-\infty, \infty\}$ is mandatory (\Rightarrow *exception-free*).

To cover overflow, an extension $\nabla, \Delta : \mathbb{R} \to \mathbb{F}^*$

with $\mathbb{F}^* := \mathbb{F} \cup \{-\infty, \infty\}$ is mandatory (\Rightarrow *exception-free*).

This allows verified *floating-point* bounds for $x \circ y$ or f(x) for all *real* x, y, also in case of overflow.

To cover overflow, an extension $\nabla, \Delta : \mathbb{R} \to \mathbb{F}^*$ with $\mathbb{F}^* := \mathbb{F} \cup \{-\infty, \infty\}$ is mandatory (\Rightarrow exception-free).

This allows verified *floating-point* bounds for $x \circ y$ or f(x) for all *real* x, y, also in case of overflow.

The range of an interval is defined to be a subset of IR.

To cover overflow, an extension $\nabla, \Delta : \mathbb{R} \to \mathbb{F}^*$ with $\mathbb{F}^* := \mathbb{F} \cup \{-\infty, \infty\}$ is mandatory (\Rightarrow exception-free).

This allows verified *floating-point* bounds for $x \circ y$ or f(x) for all *real* x, y, also in case of overflow.

The range of an interval is defined to be a subset of IR.

This implies the appealing property

 $0 \cdot x = [0, 0]$ for all intervals *x*.

To cover overflow, an extension $\nabla, \Delta : \mathbb{R} \to \mathbb{F}^*$ with $\mathbb{F}^* := \mathbb{F} \cup \{-\infty, \infty\}$ is mandatory (\Rightarrow exception-free).

This allows verified *floating-point* bounds for $x \circ y$ or f(x) for all *real* x, y, also in case of overflow.

The range of an interval is defined to be a subset of IR.

This implies the appealing property

 $0 \cdot x = [0, 0]$ for all intervals *x*.

So far, so good.

Infinite bounds - an abuse?

Now $x = \exp([0, 1000]) = [1, \infty)$ in IEEE 754,

Infinite bounds - an abuse?

Now $x = \exp([0, 1000]) = [1, \infty)$ in IEEE 754,

so naturally inf(x) = 1 and $sup(x) = \infty$.

Infinite bounds - an abuse?

Now $x = \exp([0, 1000]) = [1, \infty)$ in IEEE 754,

so naturally inf(x) = 1 and $sup(x) = \infty$.

Since $x \subseteq \mathbb{R}$ for all intervals x, it seems natural to define

 $interval(\infty) := \emptyset$.

Consider

$$f(x) = \frac{10x+5}{(e^x)^3} - 1 \; .$$

Consider

$$f(x) = \frac{10x+5}{(e^x)^3} - 1$$

 $cube(x) := x^3$ is monotone over **I**R, suggesting the implementation

```
function yy = cube(xx)
xxinf = num2interval(inf(xx)); yyinf = xxinf*xxinf*xxinf;
xxsup = num2interval(sup(xx)); yysup = xxsup*xxsup*xxsup;
yy = convexHull(yyinf,yysup);
```


Consider

$$f(x) = \frac{10x+5}{(e^x)^3} - 1$$

 $cube(x) := x^3$ is monotone over **I**R, suggesting the implementation

```
function yy = cube(xx)
xxinf = num2interval(inf(xx)); yyinf = xxinf*xxinf*xxinf;
xxsup = num2interval(sup(xx)); yysup = xxsup*xxsup*xxsup;
yy = convexHull(yyinf,yysup);
```

Then zz=f(nums2interval(0,1000)) yields zz=[4,10004],

suggesting f has no positive real root

Consider

$$f(x) = \frac{10x + 5}{(e^x)^3} - 1$$

 $cube(x) := x^3$ is monotone over **I**R, suggesting the implementation

```
function yy = cube(xx)
    xxinf = num2interval(inf(xx)); yyinf = xxinf*xxinf*xxinf;
    xxsup = num2interval(sup(xx)); yysup = xxsup*xxsup*xxsup;
    yy = convexHull(yyinf,yysup);
```

Then zz=f(nums2interval(0,1000)) yields zz=[4,10004],

suggesting f has no positive real root

without error message! But ...

6/24

Back Close

... there is a positive root: Graph of f between -0.6 and 3

As before, zz=nums2interval(0,1000) implies $xx = exp(zz) = [1, \infty)$

As before, zz=nums2interval(0,1000) implies $xx = exp(zz) = [1, \infty)$

 \Rightarrow xxsup = num2interval(sup(xx)) = \emptyset

As before, zz=nums2interval(0,1000) implies $xx = exp(zz) = [1, \infty)$

 \Rightarrow xxsup = num2interval(sup(xx)) = \emptyset

hence

$$(e^{[0,1000]})^3 \subseteq \text{cube}(\exp(\text{nums2interval}(0,1000))) = [1,1],$$

a fatal mistake.

9/24

↓
↓
Back
Close

However, Neumaier writes in his Vienna-proposal: "The semantic error would probably be caught easily on debugging even without the flag, since instead of a wide result something very narrow is returned."

However, Neumaier writes in his Vienna-proposal: "The semantic error would probably be caught easily on debugging even without the flag, since instead of a wide result something very narrow is returned."

And he admits:

"I expect that the nonstandardNumber flag will never be inspected, except for debugging purposes."

However, Neumaier writes in his Vienna-proposal: "The semantic error would probably be caught easily on debugging even without the flag, since instead of a wide result something very narrow is returned."

And he admits:

"I expect that the nonstandardNumber flag will never be inspected, except for debugging purposes."

However, debugging requires a suspicion (in the example $f(nums2interval(0, 1000)) \subseteq [4, 10004]$).

Definition of directed rounding I

Clearly $\Delta(r) = \min\{f \in \mathbb{F} : r \le f\}$ for $r \in \mathbb{R}$.

Definition of directed rounding I

Clearly $\Delta(r) = \min\{f \in \mathbb{F} : r \le f\}$ for $r \in \mathbb{R}$.

What about $\Delta(\pm \infty)$?

Clearly $\Delta(r) = \min\{f \in \mathbb{F} : r \le f\}$ for $r \in \mathbb{R}$.

What about $\Delta(\pm\infty)$?

A natural definition is

$$\Delta(r) = \min\{f \in \mathbb{I}F : r \le f\} \text{ for } r \in \mathbb{R}^* \quad \text{with} \quad \min(\emptyset) = \infty,$$

a common definition in optimization.

Clearly $\Delta(r) = \min\{f \in \mathbb{F} : r \le f\}$ for $r \in \mathbb{R}$.

What about $\Delta(\pm \infty)$?

A natural definition is

 $\Delta(r) = \min\{f \in \mathbb{IF} : r \le f\} \text{ for } r \in \mathbb{R}^* \qquad \text{with} \qquad \min(\emptyset) = \infty,$

a common definition in optimization.

In other words, if there is no f with $r \leq f$, then the result is ∞ .

Clearly $\Delta(r) = \min\{f \in \mathbb{F} : r \le f\}$ for $r \in \mathbb{R}$.

What about $\Delta(\pm \infty)$?

A natural definition is

 $\Delta(r) = \min\{f \in \mathbb{IF} : r \le f\} \text{ for } r \in \mathbb{R}^* \qquad \text{with} \qquad \min(\emptyset) = \infty,$

a common definition in optimization.

In other words, if there is no f with $r \leq f$, then the result is ∞ .

Moreover, $\nabla(r) = -\Delta(-r)$.

The natural definition num2interval(r) = $[\nabla(r), \Delta(r)]$ for $r \in \mathbb{R}^*$ implies

 $num2interval(\infty) = (realmax, \infty]$

Definition of directed rounding II

The natural definition num2interval(r) = $[\nabla(r), \Delta(r)]$ for $r \in \mathbb{R}^*$ implies

 $num2interval(\infty) = (realmax, \infty]$

Hence

 $(e^{[0,1000]})^3 \subseteq \text{cube}(\exp(\text{nums2interval}(0,1000))) = [1,\infty)$

The natural definition num2interval(r) = $[\nabla(r), \Delta(r)]$ for $r \in \mathbb{R}^*$ implies

 $num2interval(\infty) = (realmax, \infty]$

Hence

$$(e^{[0,1000]})^3 \subseteq \text{cube}(\exp(\text{nums2interval}(0,1000))) = [1,\infty)$$

Moreover, a best possible *real* interval $[r_1, r_2]$ is rounded

into the best possible *floating-point* interval $[\nabla(r_1), \Delta(r_2)]$,

which may serve to define all interval operations including functions.

1) The apparent unsymmetry between overflow and underflow:

1) The apparent unsymmetry between overflow and underflow:

 $[0, \texttt{realmax}] + 1 = [1, \infty) =: xx \text{ with } \infty \notin xx$, but

1) The apparent unsymmetry between overflow and underflow:

 $[0, \texttt{realmax}] + 1 = [1, \infty) =: xx \text{ with } \infty \notin xx$, but

 $1/xx = [0, 1] =: yy \text{ with } 0 \in yy.$

1) The apparent unsymmetry between overflow and underflow:

 $[0, \texttt{realmax}] + 1 = [1, \infty) =: xx \text{ with } \infty \notin xx$, but

 $1/xx = [0, 1] =: yy \text{ with } 0 \in yy.$

Define *Huge* and *Tiny*?

1) The apparent unsymmetry between overflow and underflow:

 $[0, \text{realmax}] + 1 = [1, \infty) =: xx \text{ with } \infty \notin xx$, but

 $1/xx = [0, 1] =: yy \text{ with } 0 \in yy.$

Define *Huge* and *Tiny*?

2) A two-step definition: First intervals over IR, then over IF.

1) The apparent unsymmetry between overflow and underflow:

 $[0, \texttt{realmax}] + 1 = [1, \infty) =: xx \text{ with } \infty \notin xx$, but

 $1/xx = [0, 1] =: yy \text{ with } 0 \in yy.$

Define *Huge* and *Tiny*?

2) A two-step definition: First intervals over IR, then over IF.

Is it advantageous to define intervals directly over IF?

1) The apparent unsymmetry between overflow and underflow:

 $[0, \texttt{realmax}] + 1 = [1, \infty) =: xx \text{ with } \infty \notin xx$, but

 $1/xx = [0, 1] =: yy \text{ with } 0 \in yy.$

Define *Huge* and *Tiny*?

2) A two-step definition: First intervals over IR, then over IF.

Is it advantageous to define intervals directly over IF?

3) Not necessarily inf(xx), $sup(xx) \in xx$ for intervals xx.

The role of ∞ in numerical analysis

I claim

13/24

Back
Close

If ∞ occurs in a numerical computation, then in the

vast majority of all cases it stems from an overflow.

13/24

If ∞ occurs in a numerical computation, then in the

vast majority of all cases it stems from an overflow.

In other words, ∞ is *(ab)*used to express something "huge", *not* infinity.

If ∞ occurs in a numerical computation, then in the

vast majority of all cases it stems from an overflow.

In other words, ∞ is (*ab*)used to express something "huge", *not* infinity.

A true ∞ , like log(0), is most likely an *error*.

If ∞ occurs in a numerical computation, then in the vast majority of all cases it stems from an overflow.

In other words, ∞ is (*ab*)used to express something "huge", *not* infinity.

A true ∞ , like log(0), is most likely an *error*.

Typical examples are

exp(1000), 2 · realmax, etc.

but not 1/0, cot(0), etc.

If ∞ occurs in a numerical computation, then in the

vast majority of all cases it stems from an overflow.

In other words, ∞ is (*ab*)used to express something "huge", *not* infinity.

A true ∞ , like log(0), is most likely an *error*.

Typical examples are

exp(1000), 2 · realmax, etc.

but not 1/0, cot(0), etc.

[An exception is infeasibility in optimization, please ask later.]

3/24

↓
↓
Back
Close

14/24

Rather than just defining some new rounding or interval arithmetic,

we aim on a mathematical foundation.

Interval arithmetic over finitely many bounds

 $\mathbf{IB} = \{b_1, \dots, b_k\} \text{ is a weakly admissible set of interval bounds } b_i \in \mathbf{IIR} \text{ iff}$ $\alpha \in b_i, \beta \in b_{i+1} \implies \alpha < \beta \text{ for } 1 \le i < k.$

 $\mathbf{IB} = \{b_1, \dots, b_k\} \text{ is a weakly admissible set of interval bounds } b_i \in \mathbf{IIR} \text{ iff}$ $\alpha \in b_i, \ \beta \in b_{i+1} \implies \alpha < \beta \quad \text{for } 1 \le i < k.$

 $\mathbb{IB} = \{b_1, \dots, b_k\} \text{ is totally ordered by } b_i \leq b_j \quad \text{ for } 1 \leq i \leq j \leq k.$

 $\mathbf{IB} = \{b_1, \dots, b_k\} \text{ is a weakly admissible set of interval bounds } b_i \in \mathbf{IIR} \text{ iff}$ $\alpha \in b_i, \ \beta \in b_{i+1} \implies \alpha < \beta \quad \text{for } 1 \le i < k.$

$$\mathbf{IB} = \{b_1, \dots, b_k\} \text{ is totally ordered by } b_i \leq b_j \quad \text{ for } 1 \leq i \leq j \leq k.$$

 $\mathbf{IB} = \{b_1, \dots, b_k\} \text{ is an admissible set of interval bounds iff}$ $\inf b_1 = -\infty \quad \text{and} \quad \sup b_k = \infty.$

 $\mathbf{IB} = \{b_1, \dots, b_k\} \text{ is a weakly admissible set of interval bounds } b_i \in \mathbf{IIR} \text{ iff}$ $\alpha \in b_i, \ \beta \in b_{i+1} \implies \alpha < \beta \quad \text{for } 1 \le i < k.$

$$\mathbf{IB} = \{b_1, \dots, b_k\} \text{ is totally ordered by } b_i \leq b_j \quad \text{ for } 1 \leq i \leq j \leq k.$$

$$\mathbf{IB} = \{b_1, \dots, b_k\} \text{ is an admissible set of interval bounds iff}$$
$$\inf b_1 = -\infty \quad \text{and} \quad \sup b_k = \infty.$$

 $IIIB = \{ [[a, b]] : a, b \in IB, a \le b \} \cup \emptyset$ the set of proper intervals.

 $I\!I\!B = \{ [\![a, b]\!] : a, b \in I\!B, a \le b \} \cup \emptyset \quad \text{the set of proper intervals.}$

 $I\!I\!B = \{ [\![a, b]\!] : a, b \in I\!B, a \le b \} \cup \emptyset \quad \text{the set of proper intervals.}$

range($\llbracket a, b \rrbracket$) = $a \cup b$, range($\llbracket B$) = $b_1 \cup b_k$.

IIIB = {[[a, b]] : $a, b \in IB$, $a \le b$ } $\cup \emptyset$ the set of proper intervals.

range($\llbracket a, b \rrbracket$) = $a \cup b$, range($\llbracket B$) = $b_1 \cup b_k$.

IIIB is a complete lattice; IB admissible \Leftrightarrow range(IB) = IR.

IIIB = { $[[a, b]] : a, b \in IB, a \le b$ } $\cup \emptyset$ the set of proper intervals.

range($\llbracket a, b \rrbracket$) = $a \cup b$, range($\llbracket B$) = $b_1 \cup b_k$.

IIIB is a complete lattice; IB admissible \Leftrightarrow range(IB) = IR.

Interval operations \circ : IIIB × IIIB → IIIB for $\circ \in \{+, -, \cdot, /\}$ are defined by

 $A \circ B := \bigcap \{ C \in IIIB : \alpha \circ \beta \in C \text{ for all } \alpha \in A, \beta \in B \}$

IIIB = {[[a, b]] : $a, b \in IB$, $a \le b$ } $\cup \emptyset$ the set of proper intervals.

range($\llbracket a, b \rrbracket$) = $a \cup b$, range($\llbracket B$) = $b_1 \cup b_k$.

IIIB is a complete lattice; IB admissible \Leftrightarrow range(IB) = IR.

Interval operations \circ : IIIB \times IIIB \rightarrow IIIB for $\circ \in \{+, -, \cdot, /\}$ are defined by

 $A \circ B := \bigcap \{ C \in IIIB : \alpha \circ \beta \in C \text{ for all } \alpha \in A, \beta \in B \}$

Define $\diamond : \mathbb{R} \to \mathbb{IIB}$ with $\diamond(\xi) := \bigcap \{ C \in \mathbb{IIB} : \xi \in C \}$

IIIB = {[[a, b]] : $a, b \in IB$, $a \le b$ } $\cup \emptyset$ the set of proper intervals.

range($\llbracket a, b \rrbracket$) = $a \cup b$, range($\llbracket B$) = $b_1 \cup b_k$.

IIIB is a complete lattice; IB admissible \Leftrightarrow range(IB) = IR.

Interval operations \circ : IIIB \times IIIB \rightarrow IIIB for $\circ \in \{+, -, \cdot, /\}$ are defined by

 $A \circ B := \bigcap \{ C \in IIIB : \alpha \circ \beta \in C \text{ for all } \alpha \in A, \beta \in B \}$

Define $\diamond : \mathbb{R} \to \mathbb{IIB}$ with $\diamond(\xi) := \bigcap \{ C \in \mathbb{IIB} : \xi \in C \}$

Finally IIIB = IIIB \cup {NaI}; A/B = NaI for $0 \in B$.


```
↓
↓
Back
Close
```

 \mathbb{I} := {{*f*} : *f* \in **I** \mathbb{F} } is weakly admissible.

 \mathbb{I} := {{*f*} : *f* \in **I** \mathbb{F} } is weakly admissible.

 $\mathbb{IB} := \{\{v\} : v \in \mathbb{IN}, 4 \le v \le 9\} \cup \{(-\infty, 0), [3.14, 3.15], [20, \infty)\} \text{ is admissible.}$

 \mathbb{I} := {{*f*} : *f* \in **I** \mathbb{F} } is weakly admissible.

 $\mathbb{B} := \{\{v\} : v \in \mathbb{N}, 4 \le v \le 9\} \cup \{(-\infty, 0), [3.14, 3.15], [20, \infty)\} \text{ is admissible.}$

 $\mathbb{IB} := \{N, P_0\}$ with $N = (-\infty, 0)$ and $P_0 = [0, \infty)$ is admissible.

 \mathbb{I} := {{*f*} : *f* \in \mathbb{I} } is weakly admissible.

IB := {{*v*} : *v* ∈ **N**, 4 ≤ *v* ≤ 9} \cup {(-∞, 0), [3.14, 3.15], [20, ∞)} is admissible.

IB := { N, P_0 } with $N = (-\infty, 0)$ and $P_0 = [0, \infty)$ is admissible.

But $(-5)/3 \rightarrow \diamond(-5)/\diamond(3) = N/P_0 = \text{NaI} \text{ and } (-5)/3 \notin \diamond(-5)/\diamond(3)$.

 \mathbb{I} := {{*f*} : *f* \in \mathbb{I} } is weakly admissible.

IB := {{ ν } : $\nu \in \mathbb{N}, 4 \le \nu \le 9$ } \cup {($-\infty, 0$), [3.14, 3.15], [$20, \infty$)} is admissible.

IB := { N, P_0 } with $N = (-\infty, 0)$ and $P_0 = [0, \infty)$ is admissible.

But $(-5)/3 \rightarrow \diamond(-5)/\diamond(3) = N/P_0 = \text{NaI}$ and $(-5)/3 \notin \diamond(-5)/\diamond(3)$.

IB := {N, 0, P} with $N = (-\infty, 0)$ and $P = (0, \infty)$ is also admissible.

 $\mathbb{B} := \{\{f\} : f \in \mathbb{F}\}\$ is weakly admissible.

 $\mathbb{IB} := \{\{\nu\} : \nu \in \mathbb{IN}, 4 \le \nu \le 9\} \cup \{(-\infty, 0), [3.14, 3.15], [20, \infty)\} \text{ is admissible.}$

IB := { N, P_0 } with $N = (-\infty, 0)$ and $P_0 = [0, \infty)$ is admissible.

But $(-5)/3 \rightarrow \diamond(-5)/\diamond(3) = N/P_0 = \text{NaI}$ and $(-5)/3 \notin \diamond(-5)/\diamond(3)$.

IB := {N, 0, P} with $N = (-\infty, 0)$ and $P = (0, \infty)$ is also admissible.

Then $(-5)/3 \rightarrow \diamond(-5)/\diamond(3) = N/P = N$ and $(-5)/3 \in \diamond(-5)/\diamond(3)$.

Interval arithmetic over finitely many bounds: Theorems I

<u>Th. 1</u> Let IB be admissible and $\{0\}, \{1\}, \{\alpha\}, \{1/\alpha\} \in IB$ for $0 < \alpha \in IR$. Then neither interval addition nor multiplication is associative.

<u>Th. 1</u> Let IB be admissible and $\{0\}, \{1\}, \{\alpha\}, \{1/\alpha\} \in IB$ for $0 < \alpha \in IR$. Then neither interval addition nor multiplication is associative.

<u>Th. 2</u> Let IB be weakly admissible with $\{0\} \in IB$. Then

 $A \cdot B = \llbracket 0, 0 \rrbracket \quad \Leftrightarrow \quad A = \llbracket 0, 0 \rrbracket \quad \text{or} \quad B = \llbracket 0, 0 \rrbracket.$

<u>Th. 1</u> Let IB be admissible and $\{0\}, \{1\}, \{\alpha\}, \{1/\alpha\} \in IB$ for $0 < \alpha \in IR$. Then neither interval addition nor multiplication is associative.

<u>Th. 2</u> Let IB be weakly admissible with $\{0\} \in \mathbb{B}$. Then $A \cdot B = \llbracket 0, 0 \rrbracket \iff A = \llbracket 0, 0 \rrbracket$ or $B = \llbracket 0, 0 \rrbracket$.

<u>Th. 3</u> Let **B** be weakly admissible. Then $\alpha \circ \beta \in \diamond(\alpha) \circ \diamond(\beta)$ for $\circ \in \{+, -, \cdot\}$ and all $\alpha, \beta \in \mathbb{R}$ is true if and only if **B** is admissible.

<u>Th. 1</u> Let IB be admissible and $\{0\}, \{1\}, \{\alpha\}, \{1/\alpha\} \in IB$ for $0 < \alpha \in IR$. Then neither interval addition nor multiplication is associative.

<u>Th. 2</u> Let IB be weakly admissible with $\{0\} \in \mathbb{B}$. Then $A \cdot B = \llbracket 0, 0 \rrbracket \iff A = \llbracket 0, 0 \rrbracket$ or $B = \llbracket 0, 0 \rrbracket$.

<u>Th. 3</u> Let IB be weakly admissible. Then $\alpha \circ \beta \in \diamond(\alpha) \circ \diamond(\beta)$ for $\circ \in \{+, -, \cdot\}$ and all $\alpha, \beta \in \mathbb{R}$ is true if and only if IB is admissible.

Note that division is excluded. Problem: $0 \in \diamond(\beta)$ for $\beta \neq 0$.

IB is called *dense* around $\rho \in \mathbb{R}$ if there are $t_1, t_2 \in \mathbb{B}$ with sup $t_1 = \inf t_2 = \rho$ and $\rho \notin t_1 \cup t_2$.

IB is called *dense* around $\rho \in \mathbb{R}$ if there are $t_1, t_2 \in \mathbb{B}$ with sup $t_1 = \inf t_2 = \rho$ and $\rho \notin t_1 \cup t_2$.

Note $\{\rho\}$ may be an element of **IB** or not.

IB is called *dense* around $\rho \in \mathbb{R}$ if there are $t_1, t_2 \in \mathbb{B}$ with

 $\sup t_1 = \inf t_2 = \rho \qquad \text{and} \qquad \rho \notin t_1 \cup t_2.$

Note $\{\rho\}$ may be an element of **IB** or not.

 $\begin{array}{ll} \underline{\text{Th. 4}} & \text{Let IB be admissible. Then} \\ \alpha \circ \beta \in \Diamond(\alpha) \circ \Diamond(\beta) & \begin{array}{l} \text{for } \circ \in \{+, -, \cdot, /\} \text{ and all } \alpha, \beta \in \mathbb{R}, \\ \beta \neq 0 \text{ in case of division,} \end{array} \end{array}$

if and only if **B** is dense around 0.

IB is called *dense* around $\rho \in \mathbb{R}$ if there are $t_1, t_2 \in \mathbb{B}$ with

 $\sup t_1 = \inf t_2 = \rho \qquad \text{and} \qquad \rho \notin t_1 \cup t_2.$

Note $\{\rho\}$ may be an element of **IB** or not.

 $\begin{array}{ll} \underline{\text{Th. 4}} & \text{Let IB be admissible. Then} \\ \alpha \circ \beta \in \Diamond(\alpha) \circ \Diamond(\beta) & \begin{array}{l} \text{for } \circ \in \{+, -, \cdot, /\} \text{ and all } \alpha, \beta \in \mathbb{R}, \\ \beta \neq 0 \text{ in case of division,} \end{array} \end{array}$

if and only if **B** is dense around 0.

<u>Th. 5</u> Let IB be admissible and dense around 0. Then for $A, B \neq \emptyset$,

 $0 \in A \cdot B \quad \Leftrightarrow \quad 0 \in A \quad \text{or} \quad 0 \in B.$

19/24

Back Close <u>Th. 6</u> Let IB be admissible, and $\mathbb{R}_0^- \notin \mathbb{B}$, $B \neq \emptyset$, $0 \notin B$ be given. Then

 $0 \in A/B \qquad \Leftrightarrow \qquad 0 \in A$

if and only if **B** is dense around 0.

<u>Th. 6</u> Let IB be admissible, and $\mathbb{R}_0^- \notin \mathbb{B}$, $B \neq \emptyset$, $0 \notin B$ be given. Then $0 \in A/B \iff 0 \in A$ if and only if IB is dense around 0.

Th. 7 Let IB be admissible and dense around 0. Then

 $0 \in A - B \qquad \Leftrightarrow \qquad A \cap B \neq \emptyset.$

<u>Th. 6</u> Let IB be admissible, and $\mathbb{R}_0^- \notin \mathbb{B}, B \neq \emptyset, 0 \notin B$ be given. Then $0 \in A/B \iff 0 \in A$ if and only if IB is dense around 0.

Th. 7 Let IB be admissible and dense around 0. Then

 $0 \in A - B \qquad \Leftrightarrow \qquad A \cap B \neq \emptyset \,.$

<u>Th. 8</u> Let IB be admissible and $\mathbb{R}_0^- \notin \mathbb{B}$. Then $B \subseteq A/(A/B)$ for all $A \neq \emptyset$ with $0 \notin A \cup B$ if and only if IB is dense around 0.

 $\begin{array}{ll} 0 \in A - B & \Leftrightarrow & A \cap B \neq \emptyset \\ 0 \in A \cdot B & \Leftrightarrow & 0 \in A \cup B \\ A \subseteq B/(B/A) & \text{if } 0 \notin A \cup B \end{array}$

avoiding problems with underflow, and

 $\begin{array}{lll} 0 \in A - B & \Leftrightarrow & A \cap B \neq \emptyset \\ 0 \in A \cdot B & \Leftrightarrow & 0 \in A \cup B \\ A \subseteq B/(B/A) & \text{if } 0 \notin A \cup B \end{array}$

avoiding problems with underflow, and

```
\alpha \in \text{interval}(\alpha)
[\alpha, \beta] = hull(interval(\alpha), interval(\beta))
```


 $\begin{array}{ll} 0 \in A - B & \Leftrightarrow & A \cap B \neq \emptyset \\ 0 \in A \cdot B & \Leftrightarrow & 0 \in A \cup B \\ A \subseteq B/(B/A) & \text{if } 0 \notin A \cup B \end{array}$

avoiding problems with underflow, and

 $\alpha \in \text{interval}(\alpha)$ [α, β] = hull(interval(α), interval(β))

or $A \subseteq \log(\exp(A))$ for any interval A,

all without exception flag.

 $0 \in A - B \iff A \cap B \neq \emptyset$ $0 \in A \cdot B \iff 0 \in A \cup B$ $A \subseteq B/(B/A) \quad \text{if } 0 \notin A \cup B$

avoiding problems with underflow, and

```
\alpha \in \text{interval}(\alpha)
[\alpha, \beta] = hull(interval(\alpha), interval(\beta))
```

```
or A \subseteq \log(\exp(A)) for any interval A,
```

all without exception flag.

Despite IB being admissible and dense around 0 there is any freedom!

Define $H := (realmax, \infty)$ HUGE T := (0, realmin) TINY

Interval arithmetic over finitely many bounds: Examples

Define $H := (realmax, \infty)$ HUGE T := (0, realmin) TINY

Then the set of interval bounds

 $\mathbb{I} \mathbb{B} := \{\{f\} : f \in \mathbb{I} \mathbb{F}\} \cup \{-H, -T, T, H\} \text{ is admissible and dense around } 0.$

Interval arithmetic over finitely many bounds: Examples

Define $H := (realmax, \infty)$ HUGE T := (0, realmin) TINY

Then the set of interval bounds

 $\mathbb{I} \mathbb{B} := \{\{f\} : f \in \mathbb{I} \mathbb{F}\} \cup \{-H, -T, T, H\} \text{ is admissible and dense around } 0.$

The main differences to the interval to-be standard IEEE P1788 are

1) ∞ is replaced by *H* and 2) *T* is introduced.

Define $H := (realmax, \infty)$ HUGE T := (0, realmin) TINY

Then the set of interval bounds

 $\mathbb{I} \mathbb{B} := \{\{f\} : f \in \mathbb{I} \mathbb{F}\} \cup \{-H, -T, T, H\} \text{ is admissible and dense around } 0.$

The main differences to the interval to-be standard IEEE P1788 are

1) ∞ is replaced by *H* and 2) *T* is introduced.

Where is the beef?

Interval arithmetic over finitely many bounds: Examples

Define x = [0, 1000]. Conventionally $exp(x) = [1, \infty)$, but ...

Interval arithmetic over finitely many bounds: Examples

Define x = [0, 1000]. Conventionally $exp(x) = [1, \infty)$, but ...

 $1/\exp(-x) = 1/[0, 1] = [1, \infty)$ with flag, or = NaI.

 $1/\exp(-x) = 1/[0, 1] = [1, \infty)$ with flag, or = NaI.

New $1/\exp(-x) = 1/[[T, 1]] = [[1, H]] = \exp(x)$ without exception.

$$1/\exp(-x) = 1/[0, 1] = [1, \infty)$$
 with flag, or = NaI.

New $1/\exp(-x) = 1/[[T, 1]] = [[1, H]] = \exp(x)$ without exception.

Define x = [realmin, 1]. Then

Conventionally $\log(x^2) = \log([0, 1]) = (-\infty, 0]$ with flag, or = NaI.

 $1/\exp(-x) = 1/[0, 1] = [1, \infty)$ with flag, or = NaI.

New $1/\exp(-x) = 1/[[T, 1]] = [[1, H]] = \exp(x)$ without exception.

Define x = [realmin, 1]. Then Conventionally $log(x^2) = log([0, 1]) = (-\infty, 0]$ with flag, or = NaI.

New $\log(x^2) = \log([[T, 1]]) = [[-H, 0]]$ without exception.

 $1/\exp(-x) = 1/[0, 1] = [1, \infty)$ with flag, or = NaI.

New $1/\exp(-x) = 1/[[T, 1]] = [[1, H]] = \exp(x)$ without exception.

Define x = [realmin, 1]. Then Conventionally $\log(x^2) = \log([0, 1]) = (-\infty, 0]$ with flag, or = NaI. New $\log(x^2) = \log(\llbracket T, 1 \rrbracket) = \llbracket -H, 0 \rrbracket$ without exception.

New $\log(\exp([-H, H])) = \log([T, H]) = [-H, H]$

etc.

Add $1^- = \{(pred(1), 1)\}$ and $1^+ = \{(1, succ(1))\}$ to IB. Then

Add $1^- = \{(pred(1), 1)\}$ and $1^+ = \{(1, succ(1))\}$ to IB. Then $tanh(\llbracket 0, 30 \rrbracket) = \llbracket 0, 1^- \rrbracket, \quad 1 - \llbracket 0, 1^- \rrbracket = \llbracket T, 1 \rrbracket.$

Add $1^- = \{(pred(1), 1)\}$ and $1^+ = \{(1, succ(1))\}$ to IB. Then $tanh(\llbracket 0, 30 \rrbracket) = \llbracket 0, 1^- \rrbracket, \quad 1 - \llbracket 0, 1^- \rrbracket = \llbracket T, 1 \rrbracket.$

Add $E = \{e\}$ to IB. Then

Add $1^- = \{(pred(1), 1)\}$ and $1^+ = \{(1, succ(1))\}$ to IB. Then $tanh(\llbracket 0, 30 \rrbracket) = \llbracket 0, 1^- \rrbracket, \quad 1 - \llbracket 0, 1^- \rrbracket = \llbracket T, 1 \rrbracket.$

Add $E = \{e\}$ to IB. Then

 $\exp(\log([[1, E]])) = [[1, E]]$ and $\log([[E, E]]) = [[1, 1]]$.

Add $1^- = \{(pred(1), 1)\}$ and $1^+ = \{(1, succ(1))\}$ to IB. Then $tanh(\llbracket 0, 30 \rrbracket) = \llbracket 0, 1^- \rrbracket, \quad 1 - \llbracket 0, 1^- \rrbracket = \llbracket T, 1 \rrbracket.$

Add $E = \{e\}$ to **IB**. Then

 $\exp(\log([[1, E]])) = [[1, E]]$ and $\log([[E, E]]) = [[1, 1]]$.

etc.

Reference:

S.M. Rump: Interval arithmetic over finitely many endpoints, to appear in *BIT*, 2012.

