New Directions in Interval Linear Programming

Milan Hladík

Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

SCAN 2012, Novosibirsk
September 23-29

Objectives

Objectives of the presentation
To show that interval linear programming

- has important applications
- has many nice results
- has challenging problems

Outline

(1) Interval linear programming introduction

- interval linear inequalities
- complexity issues
(2) Interval linear programming problems
- optimal value range
- optimal solution set
(3) Interval linear programming applications
- interval linear regression
- constraint programming and global optimization

Interval linear inequalities

Notation

An interval matrix

$$
\mathbf{A}:=[\underline{A}, \bar{A}]=\left\{A \in \mathbb{R}^{m \times n} \mid \underline{A} \leq A \leq \bar{A}\right\} .
$$

The midpoint and radius matrices

$$
A_{c}:=\frac{1}{2}(\bar{A}+\underline{A}), \quad A_{\Delta}:=\frac{1}{2}(\bar{A}-\underline{A}) .
$$

Theorem (Oettli-Prager, 1964)

A vector $x \in \mathbb{R}^{n}$ is a solution of $\mathbf{A} x=\mathbf{b}$ if and only if

$$
\left|A_{c} x-b_{c}\right| \leq A_{\Delta}|x|+b_{\Delta} .
$$

Theorem (Gerlach, 1981)

A vector $x \in \mathbb{R}^{n}$ is a solution of $\mathbf{A} x \leq \mathbf{b}$ if and only if

$$
A_{c} x-b_{c} \leq A_{\Delta}|x|+b_{\Delta}
$$

Interval linear inequalities

Example (An interval polyhedron)

$$
\left(\begin{array}{cc}
-[2,5] & -[7,11] \\
{[1,13]} & -[4,6] \\
{[5,8]} & {[-2,1]} \\
-[1,4] & {[5,9]} \\
-[5,6] & -[0,4]
\end{array}\right) \times \leq\left(\begin{array}{c}
{[61,63]} \\
{[19,20]} \\
{[15,22]} \\
{[24,25]} \\
{[26,37]}
\end{array}\right)
$$

- union of all feasible sets in light gray,
- intersection of all feasible sets in dark gray,

Interval linear programming

Linear programming

Three basic forms of linear programs

$$
\begin{aligned}
& f(A, b, c) \equiv \min c^{T} x \text { subject to } A x=b, x \geq 0 \\
& f(A, b, c) \equiv \min c^{T} x \text { subject to } A x \leq b \\
& f(A, b, c) \equiv \min c^{T} x \text { subject to } A x \leq b, x \geq 0
\end{aligned}
$$

Interval linear programming

Family of linear programs with $A \in \mathbf{A}, b \in \mathbf{b}, c \in \mathbf{c}$, in short

$$
f(\mathbf{A}, \mathbf{b}, \mathbf{c}) \equiv \min \mathbf{c}^{\top} x \text { subject to } \mathbf{A} x \stackrel{(\leq)}{=} \mathbf{b},(x \geq 0)
$$

The three forms are not transformable between each other!

Goals

- determine the optimal value range;
- determine a tight enclosure to the optimal solution set.

Complexity of basic problems

$$
\mathbf{A} x=\mathbf{b}, x \geq 0 \quad \mathbf{A} x \leq \mathbf{b} \quad \mathbf{A} x \leq \mathbf{b}, x \geq 0
$$

strong feasibility	co-NP-hard	polynomial	polynomial
weak feasibility	polynomial	NP-hard	polynomial
strong unboundedness	co-NP-hard	polynomial	polynomial
weak unboundedness	suff. / necessary conditions only	suff. / necessary conditions only	polynomial
strong optimality	co-NP-hard	co-NP-hard	polynomial
weak optimality	suff. / necessary conditions only	suff. / necessary conditions only	suff. / necessary conditions only
optimal value range	\underline{f} polynomial \bar{f} NP-hard	$\frac{f}{f}$ NP-hard	polynomial

Optimal value range

Optimal value range

Definition

$$
\begin{aligned}
& \underline{f}:=\min f(A, b, c) \text { subject to } A \in \mathbf{A}, b \in \mathbf{b}, c \in \mathbf{c}, \\
& \bar{f}:=\max f(A, b, c) \text { subject to } A \in \mathbf{A}, b \in \mathbf{b}, c \in \mathbf{c} .
\end{aligned}
$$

Theorem (Rohn, 2006)

We have for type $(\mathbf{A} x=\mathbf{b}, x \geq 0)$

$$
\begin{aligned}
& \underline{f}=\min \underline{c}^{T} x \text { subject to } \underline{A} x \leq \bar{b}, \bar{A} x \geq \underline{b}, x \geq 0 \\
& \bar{f}=\max _{p \in\{ \pm 1\}^{m}} f\left(A_{c}-\operatorname{diag}(p) A_{\Delta}, b_{c}+\operatorname{diag}(p) b_{\Delta}, \bar{c}\right) .
\end{aligned}
$$

Theorem (Vajda, 1961)
We have for type ($\mathbf{A} x \leq \mathbf{b}, x \geq 0$)

$$
\begin{aligned}
& \underline{f}=\min \underline{c}^{T} x \text { subject to } \underline{A} x \leq \bar{b}, x \geq 0, \\
& \bar{f}=\min \bar{c}^{T} x \text { subject to } \bar{A} x \leq \underline{b}, x \geq 0 .
\end{aligned}
$$

Optimal value range

Algorithm (Optimal value range $[\underline{f}, \bar{f}]$)

(1) Compute

$$
\underline{f}:=\inf c_{c}^{\top} x-c_{\Delta}^{\top}|x| \text { subject to } x \in \mathcal{M}
$$

where \mathcal{M} is the primal solution set.
(2) If $\underline{f}=\infty$, then set $\bar{f}:=\infty$ and stop.
(3) Compute

$$
\bar{\varphi}:=\sup b_{c}^{T} y+b_{\Delta}^{T}|y| \text { subject to } y \in \mathcal{N},
$$

where \mathcal{N} is the dual solution set.
(3) If $\bar{\varphi}=\infty$, then set $\bar{f}:=\infty$ and stop.
(5) If the primal problem is strongly feasible, then set $\bar{f}:=\bar{\varphi}$; otherwise set $\bar{f}:=\infty$.

Optimal solution set

Optimal solution set

The optimal solution set

Denote by $\mathcal{S}(A, b, c)$ the set of optimal solutions to

$$
\min c^{T} x \text { subject to } A x=b, x \geq 0
$$

Then the optimal solution set is defined

$$
\mathcal{S}:=\bigcup_{A \in \mathbf{A}, b \in \mathbf{b}, c \in \mathbf{c}} \mathcal{S}(A, b, c)
$$

Goal

Find a tight enclosure to \mathcal{S}.

Optimal solution set

Characterization

By duality theory, we have that $x \in \mathcal{S}$ if and only if there is some $y \in \mathbb{R}^{m}$, $A \in \mathbf{A}, b \in \mathbf{b}$, and $c \in \mathbf{c}$ such that

$$
A x=b, x \geq 0, A^{T} y \leq c, c^{T} x=b^{T} y
$$

where $A \in \mathbf{A}, b \in \mathbf{b}, c \in \mathbf{c}$.

Relaxation

Relaxing the dependencies

$$
\mathbf{A} x=\mathbf{b}, x \geq 0, \mathbf{A}^{T} y \leq \mathbf{c}, \mathbf{c}^{\top} x=\mathbf{b}^{\top} y
$$

which is described by

$$
\begin{aligned}
\underline{A} x \leq \bar{b}, & -\bar{A} x \leq-\underline{b}, \quad x \geq 0 \\
A_{c}^{T} y-A_{\Delta}^{T}|y| \leq \bar{c}, & \left|c_{c}^{T} x-b_{c}^{T} y\right| \leq c_{\Delta}^{T} x+b_{\Delta}^{T}|y| .
\end{aligned}
$$

Linearization of $|y|$

Properties

- The solution set is non-convex in general
- It is linear at any orthant
- NP-hard to obtain exact bounds

Theorem (Beaumont, 1998)

For every $y \in \mathbf{y} \subset \mathbb{R}$ with $\underline{y}<\bar{y}$ one has

$$
\begin{equation*}
|y| \leq \alpha y+\beta \tag{1}
\end{equation*}
$$

where

$$
\alpha=\frac{|\bar{y}|-|\underline{y}|}{\bar{y}-\underline{y}} \text { and } \beta=\frac{\bar{y}|\underline{y}|-\underline{y}|\bar{y}|}{\bar{y}-\underline{y}} .
$$

Moreover, if $\underline{y} \geq 0$ or $\bar{y} \leq 0$ then (1) holds as equation.

Linearization of $|y|$

Now, the linearization reads

$$
\begin{aligned}
\underline{A} x \leq \bar{b},-\bar{A} x & \leq-\underline{b}, x \geq 0 \\
\left(A_{c}^{T}-A_{\Delta}^{T} \operatorname{diag}(\alpha)\right) y & \leq \bar{c}+A_{\Delta}^{T} \beta \\
\underline{c}^{T} x+\left(-b_{c}^{T}-b_{\Delta}^{T} \operatorname{diag}(\alpha)\right) y & \leq b_{\Delta}^{T} \beta \\
-\bar{c}^{T} x+\left(b_{c}^{T}-b_{\Delta}^{T} \operatorname{diag}(\alpha)\right) y & \leq b_{\Delta}^{T} \beta
\end{aligned}
$$

where

$$
\begin{aligned}
& \alpha_{i}:= \begin{cases}\frac{\left|\bar{y}_{i}\right|-\left|\underline{y}_{i}\right|}{\bar{y}_{i}-\underline{y}_{i}} & \text { if } \quad \underline{y_{i}}<\bar{y}_{i}, \\
\operatorname{sgn}\left(\bar{y}_{i}\right) & \text { if } \\
y_{i}=\bar{y}_{i},\end{cases} \\
& \beta_{i}:= \begin{cases}\frac{\bar{y}_{i}\left|\underline{y}_{i}\right|-\underline{y}_{i}\left|\bar{y}_{i}\right|}{\bar{y}_{i}-\underline{y}_{i}} & \text { if } \underline{y}_{i}<\bar{y}_{i}, \\
0 & \text { if } \underline{y}_{i}=\bar{y}_{i} .\end{cases}
\end{aligned}
$$

Contractor

Algorithm (Optimal solution set contractor)

(1) Compute an initial interval enclosure $\mathbf{x}^{0}, \mathbf{y}^{0}$
(2) $i:=0$;
(3) repeat
(1) compute the interval hull $\mathbf{x}^{i}, \mathbf{y}^{i}$ of the linearized system;
(2) $i:=i+1$;
(3) until improvement is nonsignificant;
(5) return x^{i};

Properties

- Each iteration requires computing the interval hull ($2(m+n)$ linear programs).
- In practice, it converges quickly, but not to \mathcal{S} in general.

Example

Example

Consider an interval linear program

$$
\begin{aligned}
\min -[15,16] x_{1}-[17,18] x_{2} & \text { subject to } \\
x_{1} & \leq[10,11], \\
-x_{1}+[5,6] x_{2} & \leq[25,26], \\
{[6,6.5] x_{1}+[3,4.5] x_{2} } & \leq[81,82], \\
-x_{1} & \leq-1, \\
x_{1}-[10,12] x_{2} & \leq-[1,2] .
\end{aligned}
$$

Take the initial enclosure

$$
\begin{aligned}
& \mathbf{x}^{0}=1000 \cdot([-1,1],[-1,1])^{T} \\
& \mathbf{y}^{0}=1000 \cdot([0,1],[0,1],[0,1],[0,1],[0,1])^{T} .
\end{aligned}
$$

Example

Example (cont.)

- Only four iterations needed.
- In grey the largest and the smallest feasible area.
- The final enclosure of the optimal solution set \mathcal{S} is dotted.

Basis stability

Definition

The interval linear programming problem

$$
\min \mathbf{c}^{T} x \text { subject to } \mathbf{A} x=\mathbf{b}, x \geq 0
$$

is B-stable if B is an optimal basis for each realization.

Theorem

B-stability implies that the optimal value bounds are

$$
\begin{aligned}
& \underline{f}=\min \underline{c}_{B}^{T} x \text { subject to } \underline{A}_{B} x_{B} \leq \bar{b},-\bar{A}_{B} x_{B} \leq-\underline{b}, x_{B} \geq 0, \\
& \bar{f}=\max \bar{c}_{B}^{T} x \text { subject to } \underline{A}_{B} x_{B} \leq \bar{b},-\bar{A}_{B} x_{B} \leq-\underline{b}, x_{B} \geq 0 .
\end{aligned}
$$

Under the unique B-stability, the set of all optimal solutions reads

$$
\underline{A}_{B} x_{B} \leq \bar{b},-\bar{A}_{B} x_{B} \leq-\underline{b}, x_{B} \geq 0, x_{N}=0 .
$$

Basis stability

Non-interval case

Basis B is optimal iff
C1. A_{B} is non-singular;
C2. $A_{B}^{-1} b \geq 0$;
C3. $c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N} \geq 0^{T}$.

Interval case

The problem is B-stable iff $\mathrm{C} 1-\mathrm{C} 3$ holds for each $A \in \mathbf{A}, b \in \mathbf{b}, c \in \mathbf{c}$.

Condition C1

- $C 1$ says that \mathbf{A}_{B} is regular;
- NP-hard problem;
- sufficient condition: $\rho\left(\left|\left(\left(A_{c}\right)_{B}\right)^{-1}\right|\left(A_{\Delta}\right)_{B}\right)<1$.

Basis stability

Non-interval case

Basis B is optimal iff
C1. A_{B} is non-singular;
C2. $A_{B}^{-1} b \geq 0$;
C3. $c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N} \geq 0^{T}$.

Interval case

The problem is B-stable iff $\mathrm{C} 1-\mathrm{C} 3$ holds for each $A \in \mathbf{A}, b \in \mathbf{b}, c \in \mathbf{c}$.

Condition C2

- $C 2$ says that the solution set to $\mathbf{A}_{B} x_{B}=\mathbf{b}$ lies in \mathbb{R}_{+}^{n};
- sufficient condition: check of some enclosure to $\mathbf{A}_{B} x_{B}=\mathbf{b}$.

Basis stability

Non-interval case

Basis B is optimal iff
C1. A_{B} is non-singular;
C2. $A_{B}^{-1} b \geq 0$;
C3. $c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N} \geq 0^{T}$.

Interval case

The problem is B -stable iff $\mathrm{C} 1-\mathrm{C} 3$ holds for each $A \in \mathbf{A}, b \in \mathbf{b}, c \in \mathbf{c}$.

Condition C3

- C2 says that $\mathbf{A}_{N}^{T} y \leq \mathbf{c}_{N}, \mathbf{A}_{B}^{T} y=\mathbf{c}_{B}$ is strongly feasible;
- NP-hard problem;
- sufficient condition:
$\left(\mathbf{A}_{N}^{T}\right) \mathbf{y} \leq \underline{c}_{N}$, where \mathbf{y} is an enclosure to $\mathbf{A}_{B}^{T} y=\mathbf{c}_{B}$.

Basis stability

Theorem

Condition C3 holds true if and only if for each $q \in\{ \pm 1\}^{m}$ the polyhedral set described by

$$
\begin{aligned}
\left(\left(A_{c}\right)_{B}^{T}-\left(A_{\Delta}\right)_{B}^{T} \operatorname{diag}(q)\right) y & \leq \bar{c}_{B} \\
-\left(\left(A_{c}\right)_{B}^{T}+\left(A_{\Delta}\right)_{B}^{T} \operatorname{diag}(q)\right) y & \leq-\underline{c}_{B} \\
\operatorname{diag}(q) y & \geq 0
\end{aligned}
$$

lies inside the polyhedral set

$$
\left(\left(A_{c}\right)_{N}^{T}+\left(A_{\Delta}\right)_{N}^{T} \operatorname{diag}(q)\right) y \leq \underline{c}_{N}, \operatorname{diag}(q) y \geq 0
$$

Basis stability

Example

Consider an interval linear program

$$
\max ([5,6],[1,2])^{T} x \text { s.t. }\left(\begin{array}{cc}
-[2,3] & {[7,8]} \\
{[6,7]} & -[4,5] \\
1 & 1
\end{array}\right) x \leq\left(\begin{array}{c}
{[15,16]} \\
{[18,19]} \\
{[6,7]}
\end{array}\right), x \geq 0 .
$$

- union of all feasible sets in light gray,
- intersection of all feasible sets in dark gray,
- set of optimal solutions in dotted area

Interval linear programming problems

Open problems

- A sufficient and necessary condition for weak unboundedness, strong boundedness and weak optimality.
- A method to check if a given $x^{*} \in \mathbb{R}^{n}$ is an optimal solution for some realization.
- A method for determining the image of the optimal value function.
- A sufficient and necessary condition for duality gap to be zero for each realization.
- A method to test if a basis B is optimal for some realization.
- Tight enclosure to the optimal solution set.

Applications

Applications

Applications

- real-life problems affected by uncertainties
- economics (portfolio selection,...)
- environmental management (water resource and waste mng. planning)
- logistic
- ...
- technical tool in constraint programming and global optimization technical tool in constraint programming and global optimization
- others
- interval matrix games
- interval linear regression interval linear regression
- measure of sensitivity of linear programs

Interval linear regression

Linear regression

Consider a linear regression model

$$
X \beta \approx y
$$

Find β solving

$$
\min _{\beta \in \mathbb{R}^{m}}\|X \beta-y\|_{p}
$$

L_{p}-norm

- $\min _{\beta \in \mathbb{R}^{m}}\|X \beta-y\|_{2} \ldots$ least squares

$$
\beta=\left(X^{\top} X\right)^{-1} X^{\top} y
$$

- $\min _{\beta \in \mathbb{R}^{m}}\|X \beta-y\|_{1} \ldots$ least absolute deviations

$$
\min e^{T} w \text { subject to } X \beta-y \leq w,-X \beta+y \leq w, w \geq 0
$$

- $\min _{\beta \in \mathbb{R}^{m}}\|X \beta-y\|_{\infty} \ldots$ Chebyshev approximation $\min t$ subject to $X \beta-y \leq t e,-X \beta+y \leq t e, t \geq 0$,

Interval linear regression

Interval linear regression

Consider a system of linear regression models

$$
X \beta \approx y
$$

where $X \in \mathbf{X}$ and $y \in \mathbf{y}$.

Reduction to Interval linear programming

- For L_{1}-norm and L_{∞}-norm, we get an interval linear program.
- Optimal value range ... minimal/maximal residual value
- Optimal solution set ... set of all regression parameters
- Illustration of basis stability:
- interpret β as a classifier of data (X, y) to two classes below and above regression line
- basis stability $=$ the same classification for any realization

Constraint programming and global optimization

Constraint programming problem

Enclose the set \mathcal{S} described by

$$
\begin{aligned}
f_{i}\left(x_{1}, \ldots, x_{n}\right) & =0, \quad i=1, \ldots, m, & & (f(x)=0) \\
g_{j}\left(x_{1}, \ldots, x_{n}\right) \leq 0, & j=1, \ldots, \ell, & & (g(x) \leq 0)
\end{aligned}
$$

on a box \mathbf{x}.

Global optimization problem

Find

$$
\min \varphi(x)
$$

subject to

$$
f(x)=0, \quad g(x) \leq 0, \quad x \in \mathbf{x}
$$

Constraint programming and global optimization

Interval linear programming approach

- linearize constraints,
- compute new bounds and iterate.

Example

Constraint programming and global optimization

Interval linearization

Let $x^{0} \in \mathbf{x}$. Suppose that a for some interval matrices \mathbf{A} and \mathbf{B} we have

$$
\begin{array}{ll}
f(x) \subseteq \mathbf{A}\left(x-x^{0}\right)+f\left(x^{0}\right), & \forall x \in \mathbf{x} \\
g(x) \subseteq \mathbf{B}\left(x-x^{0}\right)+g\left(x^{0}\right), & \forall x \in \mathbf{x}
\end{array}
$$

e.g. by the mean value form, slopes, ...

Interval linear programming formulation
Now, the set \mathcal{S} is enclosed by

$$
\begin{aligned}
& \mathbf{A}\left(x-x^{0}\right)+f\left(x^{0}\right)=0 \\
& \mathbf{B}\left(x-x^{0}\right)+g\left(x^{0}\right) \leq 0 .
\end{aligned}
$$

What remains to do

- Solve the interval linear program
- choose $x^{0} \in \mathbf{x}$

Constraint programming and global optimization

Case $x^{0}:=\underline{x}$

Let $x^{0}:=\underline{x}$. Since $x-\underline{x}$ is non-negative, the solution set to

$$
\begin{aligned}
& \mathbf{A}\left(x-x^{0}\right)+f\left(x^{0}\right)=0 \\
& \mathbf{B}\left(x-x^{0}\right)+g\left(x^{0}\right) \leq 0
\end{aligned}
$$

is described by

$$
\begin{aligned}
& \underline{A} x \leq \underline{A} \underline{x}-f(\underline{x}), \quad \bar{A} x \geq \bar{A} \underline{x}-f(\underline{x}), \\
& \underline{B} x \leq \underline{B} \underline{x}-g(\underline{x}) .
\end{aligned}
$$

- Similarly if x^{0} is any other vertex of \mathbf{x}

Constraint programming and global optimization

General case

Let $x^{0} \in \mathbf{x}$. The solution set to

$$
\begin{aligned}
& \mathbf{A}\left(x-x^{0}\right)+f\left(x^{0}\right)=0 \\
& \mathbf{B}\left(x-x^{0}\right)+g\left(x^{0}\right) \leq 0
\end{aligned}
$$

is described by

$$
\begin{aligned}
\left|A_{c}\left(x-x^{0}\right)+f\left(x^{0}\right)\right| & \leq A_{\Delta}\left|x-x^{0}\right| \\
B_{c}\left(x-x^{0}\right)+g\left(x^{0}\right) & \leq B_{\Delta}\left|x-x^{0}\right| .
\end{aligned}
$$

- Non-linear description due to the absolute values.
- How to get rid of them?

Constraint programming and global optimization

Example

Typical situation when choosing x^{0} to be vertex:

Constraint programming and global optimization

Example

Typical situation when choosing x^{0} to be the opposite vertex:

Constraint programming and global optimization

Example

Typical situation when choosing $x^{0}=x_{c}$:

Constraint programming and global optimization

Example

Typical situation when choosing $x^{0}=x_{c}$ (after linearization):

Constraint programming and global optimization

Example

Typical situation when choosing all of them:

Conclusion

My apologies for not mentioning

- duality in interval linear programming
- linear programming verification
- fuzzy linear programming
- ... and many others

Challenging problems

- enclose optimal solution set
- handle dependencies
- others (inner enclosures, ...)

