Verified solutions of sparse linear systems
 Takeshi Ogita

Division of Mathematical Sciences
Tokyo Woman's Christian University
Japan
joint work with
Shin'ichi Oishi and Siegfried M. Rump

SCAN2012, Novosibirsk

September 26, 2012

Outline

F: a set of fixed precision floating-point numbers, e.g., IEEE 754 binary64 Let us consider $A x=b$ where $A \in \mathbb{F}^{n \times n}, b \in \mathbb{F}^{n}$.

Task By the use of floating-point arithmetic (with intervals), we aim to

- prove A is nonsingular, and
- compute a forward error bound of an approximate solution \widetilde{x} of $A x=b$ s.t.

$$
\left|\left(A^{-1} b\right)_{i}-\widetilde{x}_{i}\right| \leq \epsilon_{i} \quad \text { for } 1 \leq i \leq n
$$

Brief assumptions and conditions

- The matrix A is large, sparse and moderately ill-conditioned.
- The verification process should be as fast as possible.
- Obtained error bounds should be tight (meaningful).

Some information on A^{-1} is necessary. (To estimate $\left\|A^{-1}\right\|$ is essential.) \Downarrow

One of the Grand Challenges in Interval Analysis
[1] A. Neumaier: Grand Challenges and Scientific Standards in Interval Analysis, Reliable Computing, 8 (2002), 313-320.
"Apart from a paper by Rump, nothing bas been done on the interval side."

Notation

- For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& |x|=\left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right)^{T} \in \mathbb{R}^{n} \\
& \|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|
\end{aligned}
$$

- For $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}$

$$
\begin{aligned}
& |A|=\left(\left|a_{i j}\right|\right) \in \mathbb{R}^{m \times n} \\
& \|A\|_{2}=\sqrt{\rho\left(A^{T} A\right)}=\sqrt{\lambda_{\max }\left(A^{T} A\right)} \\
& \|A\|_{\infty}=\max _{1 \leq i \leq m} \sum_{1 \leq j \leq n}\left|a_{i j}\right|
\end{aligned}
$$

- For $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in \mathbb{R}^{m \times n}$

$$
A \leq B \quad \Longleftrightarrow \quad a_{i j} \leq b_{i j} \quad \text { for all }(i, j)
$$

- o: zero vector
- e: vector of all ones
- O : matrix of all zeros
- I : identity matrix
- \mathbf{u} : rounding error unit (unit round-off), $\mathbf{u} \approx 10^{-16}$ in IEEE 754 binary64
- $\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|$: condition number

Difficult points for sparse matrices

For dense linear systems there are several efficient methods for this purpose (e.g. by Rump (1980), Oishi-Rump (2002), Hansen-Bliek-Rohn-Ning-Kearfott ([Neumaier] 1999)).

- Common basis: use of an approximate full inverse of either A or its LU factors.
- Cost: comparable with a standard numerical algorithm, Gaussian elimination with partial pivoting.
- Applicability: $\kappa(A) \lesssim 1 / \mathbf{u} \sim 10^{16}$ in binary 64 .
- Model implementation: verifylss in INTLAB, a Matlab toolbox for reliable computing.

For sparse cases things are much different: Still difficult in terms of both computational complexity and memory requirements.

- Difficulty: destruction of the sparsity of A if using full inverses.
- Exception: diagonally dominant and M-matrix or alike.

Figure 1: Destruction of sparsity of $A(n=48)$.

Figure 2: Destruction of sparsity of $A(n=1600)$.

More precisely Prof. Rump formulated the following challenge:
Derive a verification algorithm which computes an inclusion of the solution of a linear system with a general symmetric sparse matrix of dimension 10000 with condition number 10^{10} in IEEE 754 double precision, and which is no more than 10 times slower than the best numerical algorithm for that problem.
[2] S. M. Rump: Verification methods: Rigorous results using floatingpoint arithmetic, Acta Numerica, 19 (2010), 287-449.

- $\kappa\left(A^{T} A\right)=\kappa(A)^{2}$
- Treatable range in fl-pt: $\kappa(A) \lesssim \mathbf{u}^{-1} \approx 10^{16}$ in binary64
- If $\kappa(A)$ is small, then a super-fast verification method for s.p.d. matrices (to be explained) can be used after calculating $A^{T} A$.

In this talk we aim to do the following things:

1. survey existing verification methods for sparse linear systems.

- monotone (including M-matrix) [e.g. heat equation]
- H-matrix [e.g. fluid dynamics, electromagnetics]
- symmetric and positive definite [e.g. structure analysis]
- general symmetric

2. try to partially solve the problem for general symmetric matrices:

- A is large, e.g. $n \geq 10000$, and sparse.
- A is moderately ill-conditioned, e.g. $\sqrt{\mathbf{u}^{-1}}<\kappa(A)<\mathbf{u}^{-1}$.

Basic principles of verified numerical computations

1. Utilize results by standard (non-interval) numerical algorithms with pure floating-point arithmetic as much as possible.

- Quality of such results are usually good.
- There are many fast and reliable (but not verified) numerical libraries such as BLAS/LAPACK and sparse routines.

2. Use interval arithmetic only if absolutely necessary.

- To avoid slowing down computational speed.
- To avoid explosions of interval width.
$\Longrightarrow \quad$ Leave the use of interval arithmetic as late as possible. [Wilkinson]

Current status of fast verified solutions of linear systems

dense	direct solver	general	Rump (1980), Oishi-Rump (2002)
		s.p.d.	Rump (1993), Rump-Ogita (2007)
		H-matrix	Ning-Kearfott (1997)
sparse	direct solver	general	Rump (1994)
		s.p.d.	Rump (1993), Rump-Ogita (2007)
		symmetric	Rump (1995)
	any (including iterative solver)	strictly diagonally dominant	(trivial)
		monotone*	Ogita-Oishi-Ushiro (2001)
		H-matrix	Ogita-Oishi (2006)
		TN matrix	similar to monotone
		others	-

*) It is not trivial to determine whether a give matrix is monotone.

Dense matrices (for reference)

Verification methods for dense matrices:
 (1) Krawczyk-Rump

Theorem (Rump, 1980)
Let $A \in \mathbb{R}^{n \times n}, R \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$ and $\widetilde{x} \in \mathbb{R}^{n}$ be given. Let $[\epsilon] \in \mathbb{R}^{n}$ be closed and bounded with $[\epsilon] \neq \emptyset$. Let int $([\epsilon])$ denote the interior of $[\epsilon]$. If

$$
[y]:=R(b-A \widetilde{x})+(I-R A)[\epsilon] \subseteq \operatorname{int}([\epsilon]),
$$

then A is nonsingular and

$$
A^{-1} b \in \widetilde{x}+[y] .
$$

The 1st stage of INTLAB's verifylss for dense linear (interval) systems.

Verification methods for dense matrices: (2) Hansen-Bliek-Rohn-Ning-Kearfott

Theorem (Ning-Kearfott, 1997)

Let an H-matrix $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$ be given. Let $y, z \in \mathbb{R}^{n}$ be defined by $y:=\mathcal{M}(A)^{-1}|b|$ and $z_{i}:=\left[\mathcal{M}(A)^{-1}\right]_{i i}$. Let $p, q \in \mathbb{R}^{n}$ be defined by $p_{i}:=[\mathcal{M}(A)]_{i i}-z_{i}$ and $q_{i}:=y_{i} / z_{i}-\left|b_{i}\right|$. Then $A^{-1} b \in[x]$ where

$$
\left[x_{i}\right]:=\frac{b_{i}+\left[-q_{i}, q_{i}\right]}{A_{i i}+\left[-p_{i}, p_{i}\right]} .
$$

- The 2nd stage of verifylss for dense linear (interval) systems.
- The results may be of better quality than those of the Rump's approach for ill-conditioned linear systems; normally the quality is similar.

Verification methods for dense matrices:
 (3) Yamamoto

Theorem (Yamamoto, 1984)
Let $A, R \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$.
If $\|I-R A\|_{\infty}<1$, then

$$
\left|A^{-1} b-\widetilde{x}\right| \leq|R(b-A \widetilde{x})|+\frac{\|R(b-A \widetilde{x})\|_{\infty}}{1-\|I-R A\|_{\infty}}|I-R A| \mathbf{e} .
$$

- It is easy to implement the method.
- The results are usually as good as those of the Rump's approach.

Verification methods for dense matrices:
 (4) Oishi-Rump

Key estimation: $\|I-R A\|_{\infty}$

1. $P A \approx L U$. [$\frac{2}{3} n^{3}$ flops]
2. $X_{L} \approx L^{-1}$ and $X_{U} \approx U^{-1}$. [$\left[\frac{2}{3} n^{3}\right.$ flops in total $]$
3. $R:=X_{U} X_{L} P$ (not explicitly compute it).
4. Use a priori error bounds by backward error analysis.

Evaluation in $\mathcal{O}\left(n^{2}\right)$ flops:

$$
\|I-R A\|_{\infty} \leq c_{1} \mathbf{u}\left\|\left|X_{U}\right|\left(\left|X_{L}\right|(|L|(|U| e))\right)\right\|_{\infty}+c_{2} \underline{\mathbf{u}},
$$

where c_{1}, c_{2} are some computable factors and $\underline{\mathbf{u}}$ is the underflow unit.

- The same computational effort for calculating an approximate solution.

Sparse matrices

Verification methods for sparse matrices: strictly diagonally dominant

Suppose $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ is strictly (row) diagonally dominant.
Let $D:=\operatorname{diag}\left(a_{11}, \ldots, a_{n n}\right)$ and $\widetilde{A}:=A-D$.
Setting $R:=D^{-1}=\operatorname{diag}\left(a_{11}^{-1}, \ldots, a_{n n}^{-1}\right)$ yields

$$
\|I-R A\|_{\infty}=\left\|I-D^{-1} A\right\|_{\infty}=\left\|D^{-1} \widetilde{A}\right\|_{\infty}<1
$$

since $\sum_{j \neq i}\left|a_{i j}\right|<\left|a_{i i}\right|$ for all i.

Verification methods for sparse matrices: monotone (including M-matrix)

monotone $=$ inverse nonnegative
Definition 1. [monotone] A matrix $A \in \mathbb{R}^{n \times n}$ is called monotone if $A v \geq \mathbf{o}$ for $v \in \mathbb{R}^{n}$ implies $v \geq \mathbf{o}$.

Lemma 2. A is monotone if and only if A is nonsingular with $A^{-1} \geq O$.
Definition 3. [M-matrix] Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ with $a_{i i}>0$ and $a_{i j} \leq 0$ for $i \neq j$. Then A is called an M-matrix if A is nonsingular and $A^{-1} \geq O$.

Theorem (Ogita-Oishi-Ushiro, 2001)
Let $A \in \mathbb{R}^{n \times n}$ with A being monotone and $b, \widetilde{y} \in \mathbb{R}^{n}$.
If $\|\mathbf{e}-A \widetilde{y}\|_{\infty}<1$, then

$$
\left\|A^{-1}\right\|_{\infty} \leq \frac{\|\widetilde{y}\|_{\infty}}{1-\|\mathbf{e}-A \widetilde{y}\|_{\infty}}
$$

- To solve $A y=\mathbf{e}$, the same solver for solving $A x=b$ can be applied.
- $\|\mathbf{e}-A \widetilde{y}\|_{\infty}<1$ is suited as a stopping criterion for iterative solvers.
- It is not trivial to determine whether A is monotone.

Proof of the theorem for monotone matrices

Since $A^{-1} \geq O$, we have

$$
\begin{aligned}
\left\|A^{-1}\right\|_{\infty} & =\left\|\left|A^{-1}\right| e\right\|_{\infty}=\left\|A^{-1} e\right\|_{\infty} \\
& \leq\left\|A^{-1} e-\widetilde{y}\right\|_{\infty}+\|\widetilde{y}\|_{\infty} \\
& \leq\left\|A^{-1}\right\|_{\infty}\|e-A \widetilde{y}\|_{\infty}+\|\widetilde{y}\|_{\infty} .
\end{aligned}
$$

This yields

$$
\left(1-\|e-A \widetilde{y}\|_{\infty}\right)\left\|A^{-1}\right\|_{\infty} \leq\|\widetilde{y}\|_{\infty} .
$$

If $\|e-A \widetilde{y}\|_{\infty}<1$, then

$$
\left\|A^{-1}\right\|_{\infty} \leq \frac{\|\widetilde{y}\|_{\infty}}{1-\|e-A \widetilde{y}\|_{\infty}}
$$

\square

Numerical results (1)

- A, b : from discretizing 2-D Poisson's equation by FEM
- The problem size n is varied from 10,000 to 250,000 .
- Solver: MICCG method
- stopping criteria: $\frac{\|b-A \widetilde{x}\|_{2}}{\|b\|_{2}} \leq 10^{-12}, \quad\|e-A \widetilde{y}\|_{\infty} \leq 10^{-3}$

$$
\begin{cases}\operatorname{div}\{-k \cdot \operatorname{grad}(u)\}=f & \text { in } \Omega \\ \{-k \cdot \operatorname{grad}(u)\} \times \mathbf{n}=0 & \text { on } \Gamma_{2} \\ \{-k \cdot \operatorname{grad}(u)\} \times \mathbf{n}=h\left(u-T_{\infty}\right) & \text { on } \Gamma_{3}\end{cases}
$$

Table 1: Computing time and relative error bound $\left\|A^{-1} b-\widetilde{x}\right\|_{\infty} /\left\|A^{-1} b\right\|_{\infty}$

$\operatorname{dim}(A)(n)$	approx. solution [s]	verification [s]	rel. error bound
10,000	3.3	1.7	4.1×10^{-10}
40,000	27.1	10.2	2.5×10^{-9}
90,000	90.7	32.3	7.1×10^{-9}
160,000	216.2	77.0	1.6×10^{-8}
250,000	458.5	146.8	3.3×10^{-8}

Intel Celeron 566MHz CPU [Computing, Suppl. 15 (2001)]
Verification process can be faster than approximation one!

Verification methods for sparse matrices: H-matrix

For $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$, the comparison matrix $\mathcal{M}(A)=\left(\widehat{a}_{i j}\right)$ of A is defined as

$$
\widehat{a}_{i j}=\left\{\begin{array}{cc}
\left|a_{i j}\right| & (i=j) \\
-\left|a_{i j}\right| & (i \neq j)
\end{array} .\right.
$$

Definition 4. [H-matrix] A is called an H-matrix if $\mathcal{M}(A)$ is an Mmatrix.

Lemma 5. A is an H-matrix if and only if there exists a vector $v>\mathbf{o}$ such that $\mathcal{M}(A) v>\mathbf{o}$.

Lemma 6. If A is an H -matrix, then $\left|A^{-1}\right| \leq \mathcal{M}(A)^{-1}$.
From Lemma 6, it follows that

$$
\left\|A^{-1}\right\|_{\infty} \leq\left\|\mathcal{M}(A)^{-1}\right\|_{\infty} .
$$

How to determine whether A is an H-matrix?

Suppose we do not know whether A is an H-matrix.
Put $\widehat{A}:=\mathcal{M}(A)$. (At least \widehat{A} is an L-matrix for any A with nonzero diagonals; $\widehat{a}_{i j}>0$ for $i=j\left(\widehat{a}_{i i}>0\right)$ and $\widehat{a}_{i j} \leq 0$ for $i \neq j$.)

There are some possibilities:

1. Use an approximation \widetilde{v} of the eigenvector corresponding to the minimum eigenvalue of \widehat{A} (that is the Perron vector of \widehat{A}^{-1} if A is an H-matrix) [Rump, 2012], or
2. Use an approximate solution of $\widehat{A} v=\mathbf{e}$. [Neumaier, 1999] $\Rightarrow \quad\|\mathbf{e}-\widehat{A} \widetilde{v}\|_{\infty}<1$ implies $\widehat{A} \widetilde{v}>\mathbf{o}$.

Verification methods for sparse matrices: another approach

For symmetric A
$\lambda_{i}(A)$: eigenvalues of A

$$
\left\|A^{-1}\right\|_{2}=\frac{1}{\min \left|\lambda_{i}(A)\right|}
$$

For non-symmetric A
$\sigma_{i}(A)$: singular values of $A\left(=\sqrt{\lambda_{i}\left(A^{T} A\right)}\right)$

$$
\left\|A^{-1}\right\|_{2}=\frac{1}{\min \sigma_{i}(A)}
$$

Verification methods for sparse matrices: symmetric and positive definite

Rump's algorithm

1. Set $\alpha:=\psi \mathbf{u} \cdot \operatorname{tr}(A)$. (ψ : computable)
2. Execute a Cholesky factorization for $A-2 \alpha I \approx L L^{T}$.
3. If succeeded, then $\lambda_{\min } \geq \alpha$.

An a priori error estimate by a backward error analysis:

$$
\left\|L L^{T}-(A-2 \alpha I)\right\|_{2} \leq \psi \mathbf{u} \cdot \operatorname{tr}(A-2 \alpha I) \leq \psi \mathbf{u} \cdot \operatorname{tr}(A)=\alpha
$$

$\Longrightarrow \quad$ INTLAB function: verifylss, isspd

Property

- Only one fl-pt Cholesky factorization $\operatorname{chol}(A-2 \alpha I)$ is nesessary. (Direct sparse solvers can be used.) Super-fast!
- If $\operatorname{chol}(A-2 \alpha I)$ runs to completion, then it is verified that " A is positive definite". (and $\lambda_{\text {min }}(A) \geq \alpha>0$)
(It is verified rigorously.)
- Even if $\operatorname{chol}(A-2 \alpha I)$ failed, it is not verified that " A is not positive definite".
(A may be positive definite, although it is unlikely.)

Numerical results (2)

Test matrices: University of Florida Sparse Matrix Collection
Computer environment:
CPU: Intel Dual-Core Xeon $2.80 \mathrm{GHz} \times 4$ processors
Memory: 32GB
OS: Red Hat Enterprise Linux WS
Software: Matlab Version 7.1.0.183 (R14) Service Pack 3

name	n	bw w/wo RCM	time (sec)
ship_003	121,728	$3659 / 3659$	260
shipsec1	140,874	$5238 / 5238$	538
cfd2	123,440	$2179 / 4333$	127
af_shell(3,4,7,8)	504,855	$2470 / 4909$	633
apache2	715,176	$2993 / 65837$	1176

Verification methods for sparse matrices: general symmetric

Rump's algorithm

1. Estimate the smallest magnitude eigenvalue (denoted by $\widetilde{\tau}_{1}$).
2. Set $\alpha:=0.9 \cdot\left|\widetilde{\tau}_{1}\right|$.
3. Execute an $\operatorname{LDL}^{\mathrm{T}}$ factorization for $A-\alpha I \approx L_{1} D_{1} L_{1}^{T}$.
4. Compute $\beta_{1} \geq\left\|L_{1} D_{1} L_{1}^{T}-(A-\alpha I)\right\|_{2}$.
5. Check the inertia of D_{1}.
6. Execute an $\mathrm{LDL}^{\mathrm{T}}$ factorization for $A+\alpha I \approx L_{2} D_{2} L_{2}^{T}$.
7. Compute $\beta_{2} \geq\left\|L_{2} D_{2} L_{2}^{T}-(A+\alpha I)\right\|_{2}$.
8. Check the inertia of D_{2}.
9. Compute a lower bound of $\min \left|\lambda_{i}(A)\right|: \underline{\sigma} \geq \alpha-\max \left\{\beta_{1}, \beta_{2}\right\}$.
$\Longrightarrow \quad$ a little unstable: $\kappa(A) \leq \kappa(A \pm \alpha I)$

Figure 3: Lower bound of the smallest magnitude eigenvalue

A similar approach for bounding eigenvalues can be found in [3] N. Yamamoto: A simple method for error bounds of eigenvalues of symmetric matrices, Linear Alg. Appl., 324 (2001), 227-234.

Verification methods for sparse matrices: non-symmetric

The following three approaches are known (Rump):

1. $B=A^{T} A$ and apply the super-fast method for s.p.d. matrices.
2. $A=L D M^{T} \quad \Rightarrow \quad \sigma_{1}(A) \geq \sigma_{1}(L) \cdot \sigma_{1}(D) \cdot \sigma_{1}(M)$.

- In practice, $A=\widetilde{L} \widetilde{D} \widetilde{M}^{T}+\Delta$ (due to rounding errors) and

$$
\sigma_{1}(A) \geq \sigma_{1}(\widetilde{L}) \cdot \sigma_{1}(\widetilde{D}) \cdot \sigma_{1}(\widetilde{M})-\|\Delta\|_{2}
$$

3. $G:=\left[\begin{array}{cc}O & A^{T} \\ A & O\end{array}\right]$ and apply any method for symmetric matrices to G.

- $\left\{\lambda_{i}(G), 1 \leq i \leq 2 n\right\}=\left\{ \pm \sigma_{j}(A), 1 \leq j \leq n\right\} . \quad \Rightarrow \quad \kappa(G)=\kappa(A)$
- For small α, an $\mathrm{LDL}^{\mathrm{T}}$ factorization for $G-\alpha I$ is a little unstable.

A new approach for sparse matrices

Lower bound of the smallest singular value

- Present status: Few methods of obtaining $\underline{\sigma} \leq \sigma_{1}(A)$ are known except some methods by Rump based on $\mathrm{LDL}^{\mathrm{T}}$ factorization.
- Special case: A super-fast verification method for SPD matrices by Rump using Cholesky factorization.
- applicable up to $\kappa(A) \sim \mathbf{u}^{-1} / \psi$ where $\psi:=\max _{i} \operatorname{nnz}(L(i,:))$ for a Cholesky factor L.
- Suboptimal approach: use of $A^{T} A$ or $A A^{T}$.
- An obvious drawback: it squares the condition number of A, so that applicable up to $\kappa(A) \sim 1 / \sqrt{\mathbf{u}} \sim 10^{8}$.

Preliminaries

Theorem 7. [eigenvalue perturbation] Let A and B be real symmetric $n \times n$ matrices. Then it holds for $i=1,2, \ldots, n$

$$
\left|\lambda_{i}(A)-\lambda_{i}(B)\right| \leq\|A-B\|_{2}
$$

Theorem 8. Let $A=A^{T} \in \mathbb{R}^{n \times n}$. For some $\alpha \in \mathbb{R}$, suppose

$$
A-\alpha I=X D X^{T}
$$

where X is some nonsingular matrix and $D \in \mathbb{R}^{n \times n}$. Then the inertia of D is equivalent to a triplet of the number of eigenvalues of A which are larger than, smaller than or equal to α.

Theorem 9. [Lehmann bounds] Let $A=A^{T} \in \mathbb{R}^{n \times n}$. Let $\lambda_{i}, 1 \leq$ $i \leq n$, be eigenvalues of A with

$$
\lambda_{1} \leq \cdots \leq \lambda_{n}
$$

Suppose $\nu \in \mathbb{R}$ satisfies $\lambda_{k}<\nu \leq \lambda_{k+1}$ for some k. Let X be a real $n \times k$ matrix of full rank. Put $A_{1}=X^{T} X, A_{2}=X^{T} A X, A_{3}=X^{T} A^{2} X$, $B_{1}=\nu A_{1}-A_{2}$ and $B_{2}=\nu^{2} A_{1}-2 \nu A_{2}+A_{3}$. Let $\mu_{j}, 1 \leq j \leq k$, be generalized eigenvalues of $\left(B_{1}, B_{2}\right)$ with

$$
\mu_{1} \leq \cdots \leq \mu_{k}
$$

If B_{1} is positive definite, then it holds for $j=1, \ldots, k$ that

$$
\lambda_{k-j+1} \geq \nu-\frac{1}{\mu_{j}}
$$

Principle of the proposed algorithm

We try to derive a verification algorithm which is

- fast (comparable with the cost for $\mathrm{LDL}^{\mathrm{T}}$ factorization)
- stable (applicable for cases $\kappa(A)>10^{10}$)

For this purpose,

- Find two approximate eigenvalues $\widetilde{\tau}_{k}, \widetilde{\tau}_{k+1}$ where the gap $\left|\widetilde{\tau}_{k+1}\right|-\left|\widetilde{\tau}_{k}\right|$ is sufficiently large.
- Use block $\mathrm{LDL}^{\mathrm{T}}$ factorizations and their a priori error estimates.
- Apply Lehmann bounds for $\widetilde{\tau}_{j}, j=1, \ldots, k$.

Figure 4: Distribution of absolute values of eigenvalues.

Figure 5: Distribution of eigenvalues around zero.

Rounding error analysis on block $\operatorname{LDL}^{\mathrm{T}}$ factorizations

Block $\mathrm{LDL}^{\mathrm{T}}$ factorization: $P A P^{T}=L D L^{T}$, where

$$
D=\left[\begin{array}{cccc}
D_{1} & & & \\
& D_{2} & & \\
& & \ddots & \\
& & & D_{\ell}
\end{array}\right], L=\left[\begin{array}{cccc}
L_{11} & & & \\
L_{21} & L_{22} & & \\
\vdots & \vdots & \cdots & \\
L_{\ell 1} & L_{\ell 2} & \cdots & L_{\ell \ell}
\end{array}\right]
$$

Each D_{i} and $L_{i i}$ is a 1×1 or 2×2 block, with $L_{i i}$ being 1 or the 2×2 identity matrix, respectively. The rest of L is partitioned accordingly.

There are several methods with different pivoting strategies:

- Bunch-Parlett (1971)
- Bunch-Kaufman (1977)
- others

For the rounding error analysis, we need a backward error bound for the solution of linear systems involving 2×2 pivots.

We assume that the 2×2 linear system $E y=f$ is solved successfully with a computed solution \widetilde{y} satisfying

$$
\begin{equation*}
(E+\Delta E) \widetilde{y}=f, \quad|\Delta E| \leq \epsilon_{c}|E| \tag{1}
\end{equation*}
$$

for some constant $\epsilon_{c}>0$.
Under some conditions we can prove that the condition (1) is rigorously satisfied with

$$
\epsilon_{c}= \begin{cases}4 \gamma_{2} & (\text { GEPP }) \\ \frac{1}{6} \gamma_{298} & \text { (the explicit inverse without scaling) } \\ \frac{1}{6} \gamma_{556} & \text { (the explicit inverse with scaling) }\end{cases}
$$

where $\gamma_{m}=m \mathbf{u} /(1-m \mathbf{u})[\approx m \mathbf{u}$ for not so large m].

Theorem 10. [Ogita-Rump] Let $A=A^{T} \in \mathbb{F}^{n \times n}$. Let $L=\left(l_{i j}\right)$, $D=\left(d_{i j}\right)$ and P be a computed block $\mathrm{LDL}^{\mathrm{T}}$ factors of A. Suppose the condition (1) is satisfied for some constant $\epsilon_{c}>0$. For $1 \leq i, j \leq n$ define

$$
s(i, j):=\mid\left\{k \in \mathbb{N}: 1 \leq k<\min (i, j) \text { and } l_{i k} d_{k k} l_{j k} \neq 0\right\} \mid
$$

and denote

$$
\alpha_{i j}:=\left\{\begin{array}{ll}
\gamma_{s(i, j)+1} & \text { if } s(i, j) \neq 0 \\
0 & \text { otherwise }
\end{array} .\right.
$$

Put $\epsilon_{2}=\max \left\{\epsilon_{c}, \bar{\alpha}\right\}$ where $\bar{\alpha}=\max _{i, j} \alpha_{i j}$ for $1 \leq i, j \leq n$. Then it holds that

$$
\left|P A P^{T}-L D L^{T}\right| \leq \epsilon_{2}\left(P|A| P^{T}+|L||D \| L|^{T}\right)
$$

Proposed algorithm

1. Find two approximate eigenvalues $\widetilde{\tau}_{k}, \widetilde{\tau}_{k+1}$ where the gap $\left|\widetilde{\tau}_{k+1}\right|-$ $\left|\widetilde{\tau}_{k}\right|$ is sufficiently large.
2. Take α in $\left(\left|\widetilde{\tau}_{k}\right|,\left|\widetilde{\tau}_{k+1}\right|\right)$.
3. Execute a block $\mathrm{LDL}^{\mathrm{T}}$ for $P(A-\alpha I) P^{T} \approx L_{1} D_{1} L_{1}^{T}$.
4. Compute $\beta_{1} \geq\left\|L_{1} D_{1} L_{1}^{T}-P(A-\alpha I) P^{T}\right\|_{2}$.
5. Check the inertia of D_{1}.
6. Execute a block $\mathrm{LDL}^{\mathrm{T}}$ for $P(A+\alpha I) P^{T} \approx L_{2} D_{2} L_{2}^{T}$.
7. Compute $\beta_{2} \geq\left\|L_{2} D_{2} L_{2}^{T}-P(A+\alpha I) P^{T}\right\|_{2}$.
8. Check the inertia of D_{2}.
9. Apply Lehmann bounds for $\widetilde{\tau}_{j}, j=1, \ldots, k$.

$$
\beta_{1}, \beta_{2} \text { : computed by a priori error estimates }
$$

Numerical results (for reference)

We evaluate the performance of the proposed algorithm.
CPU: 2.66 GHz Intel Core 2 Duo, Memory: 8GB
We implement a hybrid algorithm:
Stage-1: Rump's algorithm
Stage-2: Proposed algorithm

Example: Random sparse symmetric matrices having 5 clustered eigenvalues in $[1,1.1]$ and $n-5$ eigenvalues in $\left[10^{2}\right.$, cnd $]$ in magnitude.

$$
|\lambda(A)|=\left\{1,1.025,1.05,1.075,1.1,10^{2}, \ldots, \mathrm{cnd}\right\}
$$

$\Longrightarrow \quad \kappa(A)=$ cnd, symmetric and indefinite.

Example: random sparse, density $=5 / \mathrm{n}, \min |\lambda(A)|=1$
Computing time (sec) and lower bound of the smallest magnitude eigenvalue

n	cond	Stage-1	Stage-2	lower bound
10,000	1e12	0.86	--	0.916
10,000	1e13	failed	1.72	0.998
10,000	1e14	failed	1.41	0.974
20,000	1e15	failed	failed	--
20,000	1e12	1.80	--	0.589
20,000	1e13	failed	5.40	0.999
20,000	1e14	failed	6.54	0.996
20,000	1e15	failed	failed	--

50,000	1e12	8.03	--	0.387
50,000	1 e 13	failed	74.89	0.999
50,000	1e14	failed	48.88 *	0.997
50,000	1e15	failed	failed	--
100,000	1e12	8.81	--	0.426
100,000	1e13	failed	153.62	0.999
100,000	1e14	failed	485.85 *	0.999
100,000	1e15	failed	failed	--

Conclusions

- There exists efficient (practically useful) verification methods for sparse matrices having special property.
- Verified numerical computation for general sparse linear systems is still difficult.
- Nevertheless, (we) never ever give up!

Thanks for your kind attention!

