
Rigorous Computation with Function Enclosures
in Chebyshev Basis

Tomáš Dzetkulič

Institute of Computer Science
Academy of Sciences of the Czech Republic

27th of September 2012

1 / 18

Rigorous Computation and Initial Value Problem in ODE
Lorentz system:
ẋ = 10(y − x)
ẏ = x(28− z)− y
ż = xy − 8z/3

x(0) = 15; y(0) = 15; z(0) = 36

Using Matlab ode45, we get numerical solution:

ATol=RTol=10−10

x(50) 6.85806551
y(50) -1.82131145
z(50) 34.13364729

Rigorous solution:
x(50) ∈ [−0.4737,−0.4738]
y(50) ∈ [−5.13,−5.14]
z(50) ∈ [26.93, 26.94]

2 / 18

Rigorous Computation and Initial Value Problem in ODE
Lorentz system:
ẋ = 10(y − x)
ẏ = x(28− z)− y
ż = xy − 8z/3

x(0) = 15; y(0) = 15; z(0) = 36

Using Matlab ode45, we get numerical solution:

ATol=RTol=10−10 ATol=RTol=10−16

x(50) 6.85806551 4.89309707
y(50) -1.82131145 7.51188676
z(50) 34.13364729 16.64840204

Rigorous solution:
x(50) ∈ [−0.4737,−0.4738]
y(50) ∈ [−5.13,−5.14]
z(50) ∈ [26.93, 26.94]

2 / 18

Rigorous Computation and Initial Value Problem in ODE
Lorentz system:
ẋ = 10(y − x)
ẏ = x(28− z)− y
ż = xy − 8z/3

x(0) = 15; y(0) = 15; z(0) = 36

Using Matlab ode45, we get numerical solution:

ATol=RTol=10−10 ATol=RTol=10−16

x(50) 6.85806551 4.89309707
y(50) -1.82131145 7.51188676
z(50) 34.13364729 16.64840204

Rigorous solution:
x(50) ∈ [−0.4737,−0.4738]
y(50) ∈ [−5.13,−5.14]
z(50) ∈ [26.93, 26.94]

2 / 18

The Overview of the Contribution

We extend the work of Makino and Berz on Taylor Models

We replace the Taylor polynomial approximation in the
Taylor Model with the Chebyshev polynomial approximation

New rigorous methods for operations with the Chebyshev function
enclosure are constructed

Method is applied to the initial value problem of ordinary
differential equations

3 / 18

The Overview of the Contribution

We extend the work of Makino and Berz on Taylor Models

We replace the Taylor polynomial approximation in the
Taylor Model with the Chebyshev polynomial approximation

New rigorous methods for operations with the Chebyshev function
enclosure are constructed

Method is applied to the initial value problem of ordinary
differential equations

3 / 18

The Overview of the Contribution

We extend the work of Makino and Berz on Taylor Models

We replace the Taylor polynomial approximation in the
Taylor Model with the Chebyshev polynomial approximation

New rigorous methods for operations with the Chebyshev function
enclosure are constructed

Method is applied to the initial value problem of ordinary
differential equations

3 / 18

Chebyshev Polynomials

Chebyshev polynomials of the first kind:
T0(x) = 1
T1(x) = x
Ti (x) = 2x Ti−1(x)− Ti−2(x) for i ∈ {2..∞}

T2(x) = 2x2 − 1; T3(x) = 4x3 − 3x ; T4(x) = 8x4 − 8x2 + 1

Alternative form: Ti (x) = cos(i arccos(x))

4 / 18

Chebyshev Polynomials

Chebyshev polynomials of the first kind:
T0(x) = 1
T1(x) = x
Ti (x) = 2x Ti−1(x)− Ti−2(x) for i ∈ {2..∞}

T2(x) = 2x2 − 1; T3(x) = 4x3 − 3x ; T4(x) = 8x4 − 8x2 + 1

Alternative form: Ti (x) = cos(i arccos(x))

4 / 18

Polynomial Function Enclosure

Taylor Model by Makino and Berz(2003):

For the function f (x1, . . . , xn) on the domain [−1, 1]n:

f (x1, . . . , xn) ∈ (
∑

(i1,...,in)
a(i1,...,in)

∏
j x

ij
j) + [−elo , ehi]

Example: f (x , y) = y sin(x) on [−1, 1]2 :

xy + 0.1666x3y + [−0.01, 0.01]

Makino and Berz(2003) claim, that:

I Magnitude of the Chebyshev series coefficients is higher
compared to the Taylor series

I Chebyshev polynomial multiplication sub-optimal

→ Chebyshev polynomials not suitable for rigorous computation

5 / 18

Polynomial Function Enclosure

Taylor Model by Makino and Berz(2003):

For the function f (x1, . . . , xn) on the domain [−1, 1]n:

f (x1, . . . , xn) ∈ (
∑

(i1,...,in)
a(i1,...,in)

∏
j x

ij
j) + [−elo , ehi]

Example: f (x , y) = y sin(x) on [−1, 1]2 :

xy + 0.1666x3y + [−0.01, 0.01]

Makino and Berz(2003) claim, that:

I Magnitude of the Chebyshev series coefficients is higher
compared to the Taylor series

I Chebyshev polynomial multiplication sub-optimal

→ Chebyshev polynomials not suitable for rigorous computation

5 / 18

Polynomial Function Enclosure

Taylor Model by Makino and Berz(2003):

For the function f (x1, . . . , xn) on the domain [−1, 1]n:

f (x1, . . . , xn) ∈ (
∑

(i1,...,in)
a(i1,...,in)

∏
j x

ij
j) + [−elo , ehi]

Example: f (x , y) = y sin(x) on [−1, 1]2 :

xy + 0.1666x3y + [−0.01, 0.01]

Makino and Berz(2003) claim, that:

I Magnitude of the Chebyshev series coefficients is higher
compared to the Taylor series

I Chebyshev polynomial multiplication sub-optimal

→ Chebyshev polynomials not suitable for rigorous computation

5 / 18

Chebyshev Function Enclosure

We show that:

I The Chebyshev series never lead to an increase in the
magnitude of the coefficients

I Although sub-optimal, the Chebyshev polynomial
multiplication gives better approximation compared to the
Taylor multiplication

We introduce the Chebyshev function enclosure of the form:

For the function f (x1, . . . , xn) on the domain [−1, 1]n:
f (x1, . . . , xn) ∈ (

∑
(i1,...,in)

a(i1,...,in)

∏
j Tij (xj)) + [−e, e]

6 / 18

Chebyshev Function Enclosure

We show that:

I The Chebyshev series never lead to an increase in the
magnitude of the coefficients

I Although sub-optimal, the Chebyshev polynomial
multiplication gives better approximation compared to the
Taylor multiplication

We introduce the Chebyshev function enclosure of the form:

For the function f (x1, . . . , xn) on the domain [−1, 1]n:
f (x1, . . . , xn) ∈ (

∑
(i1,...,in)

a(i1,...,in)

∏
j Tij (xj)) + [−e, e]

6 / 18

Function Enclosure Operations

The operations with function enclosures:

I Addition and substraction - simple term based algorithm

I Multiplication - new recursive algorithm

I Composition - Clenshaw algorithm

I Division, square root, exp - application of composition

I Integration and derivative - reordering of coefficients

7 / 18

Function Enclosure Operations

The operations with function enclosures:

I Addition and substraction - simple term based algorithm

I Multiplication - new recursive algorithm

I Composition - Clenshaw algorithm

I Division, square root, exp - application of composition

I Integration and derivative - reordering of coefficients

7 / 18

Function Enclosure Operations

The operations with function enclosures:

I Addition and substraction - simple term based algorithm

I Multiplication - new recursive algorithm

I Composition - Clenshaw algorithm

I Division, square root, exp - application of composition

I Integration and derivative - reordering of coefficients

7 / 18

Problems with Chebyshev Polynomials Multiplication

Ti (x)× Tj(x) = (Ti+j(x) + T|i−j |(x))/2

Low order terms of the result depend on high order terms

Given the truncated Chebyshev series of f1(x) and f2(x):
- impossible to compute the truncated series for f1(x)× f2(x)

Multiplication of two n-variate terms gives 2n term result:

(T1(x)T1(y))× (T2(x)T3(y)) =
(T1(x)T2(y) + T1(x)T4(y) + T3(x)T2(y) + T3(x)T4(y))/4

8 / 18

Problems with Chebyshev Polynomials Multiplication

Ti (x)× Tj(x) = (Ti+j(x) + T|i−j |(x))/2

Low order terms of the result depend on high order terms

Given the truncated Chebyshev series of f1(x) and f2(x):
- impossible to compute the truncated series for f1(x)× f2(x)

Multiplication of two n-variate terms gives 2n term result:

(T1(x)T1(y))× (T2(x)T3(y)) =
(T1(x)T2(y) + T1(x)T4(y) + T3(x)T2(y) + T3(x)T4(y))/4

8 / 18

Problems with Chebyshev Polynomials Multiplication

Ti (x)× Tj(x) = (Ti+j(x) + T|i−j |(x))/2

Low order terms of the result depend on high order terms

Given the truncated Chebyshev series of f1(x) and f2(x):
- impossible to compute the truncated series for f1(x)× f2(x)

Multiplication of two n-variate terms gives 2n term result:

(T1(x)T1(y))× (T2(x)T3(y)) =
(T1(x)T2(y) + T1(x)T4(y) + T3(x)T2(y) + T3(x)T4(y))/4

8 / 18

Recursive Polynomial Multiplication Algorithm

Task: Compute F (x1, . . . , xn)× G (x1, . . . , xn) with degree deg
polynomials

1. Separate variable x1:
F (x1, . . . , xn) =

∑deg
i=0 Fi (x2, . . . , xn)Ti (x1)

G (x1, . . . , xn) =
∑deg

i=0 Gi (x2, . . . , xn)Ti (x1)

2. For each pair Fi , Gj recursively compute P(i ,j)= Fi × Gj

3. For all i set Ri := 0

4. Add P(i ,j)/2 to Ri+j and R|i−j |

5. Construct the result:
∑2 deg

i=0 Ri (x2, . . . , xn)Ti (x1)

2 deg2 function enclosures P(i ,j)/2, but only 2 deg Ri

→ huge cancellation in step 4 of the algorithm

9 / 18

Recursive Polynomial Multiplication Algorithm

Task: Compute F (x1, . . . , xn)× G (x1, . . . , xn) with degree deg
polynomials

1. Separate variable x1:
F (x1, . . . , xn) =

∑deg
i=0 Fi (x2, . . . , xn)Ti (x1)

G (x1, . . . , xn) =
∑deg

i=0 Gi (x2, . . . , xn)Ti (x1)

2. For each pair Fi , Gj recursively compute P(i ,j)= Fi × Gj

3. For all i set Ri := 0

4. Add P(i ,j)/2 to Ri+j and R|i−j |

5. Construct the result:
∑2 deg

i=0 Ri (x2, . . . , xn)Ti (x1)

2 deg2 function enclosures P(i ,j)/2, but only 2 deg Ri

→ huge cancellation in step 4 of the algorithm

9 / 18

Recursive Polynomial Multiplication Algorithm

Task: Compute F (x1, . . . , xn)× G (x1, . . . , xn) with degree deg
polynomials

1. Separate variable x1:
F (x1, . . . , xn) =

∑deg
i=0 Fi (x2, . . . , xn)Ti (x1)

G (x1, . . . , xn) =
∑deg

i=0 Gi (x2, . . . , xn)Ti (x1)

2. For each pair Fi , Gj recursively compute P(i ,j)= Fi × Gj

3. For all i set Ri := 0

4. Add P(i ,j)/2 to Ri+j and R|i−j |

5. Construct the result:
∑2 deg

i=0 Ri (x2, . . . , xn)Ti (x1)

2 deg2 function enclosures P(i ,j)/2, but only 2 deg Ri

→ huge cancellation in step 4 of the algorithm

9 / 18

Recursive Polynomial Multiplication Algorithm

Task: Compute F (x1, . . . , xn)× G (x1, . . . , xn) with degree deg
polynomials

1. Separate variable x1:
F (x1, . . . , xn) =

∑deg
i=0 Fi (x2, . . . , xn)Ti (x1)

G (x1, . . . , xn) =
∑deg

i=0 Gi (x2, . . . , xn)Ti (x1)

2. For each pair Fi , Gj recursively compute P(i ,j)= Fi × Gj

3. For all i set Ri := 0

4. Add P(i ,j)/2 to Ri+j and R|i−j |

5. Construct the result:
∑2 deg

i=0 Ri (x2, . . . , xn)Ti (x1)

2 deg2 function enclosures P(i ,j)/2, but only 2 deg Ri

→ huge cancellation in step 4 of the algorithm

9 / 18

Recursive Polynomial Multiplication Algorithm

Task: Compute F (x1, . . . , xn)× G (x1, . . . , xn) with degree deg
polynomials

1. Separate variable x1:
F (x1, . . . , xn) =

∑deg
i=0 Fi (x2, . . . , xn)Ti (x1)

G (x1, . . . , xn) =
∑deg

i=0 Gi (x2, . . . , xn)Ti (x1)

2. For each pair Fi , Gj recursively compute P(i ,j)= Fi × Gj

3. For all i set Ri := 0

4. Add P(i ,j)/2 to Ri+j and R|i−j |

5. Construct the result:
∑2 deg

i=0 Ri (x2, . . . , xn)Ti (x1)

2 deg2 function enclosures P(i ,j)/2, but only 2 deg Ri

→ huge cancellation in step 4 of the algorithm

9 / 18

Recursive Polynomial Multiplication Algorithm

Task: Compute F (x1, . . . , xn)× G (x1, . . . , xn) with degree deg
polynomials

1. Separate variable x1:
F (x1, . . . , xn) =

∑deg
i=0 Fi (x2, . . . , xn)Ti (x1)

G (x1, . . . , xn) =
∑deg

i=0 Gi (x2, . . . , xn)Ti (x1)

2. For each pair Fi , Gj recursively compute P(i ,j)= Fi × Gj

3. For all i set Ri := 0

4. Add P(i ,j)/2 to Ri+j and R|i−j |

5. Construct the result:
∑2 deg

i=0 Ri (x2, . . . , xn)Ti (x1)

2 deg2 function enclosures P(i ,j)/2, but only 2 deg Ri

→ huge cancellation in step 4 of the algorithm

9 / 18

Initial Value Problem

Given the input:

I system of n differential equations ẋ = f (x)

I initial values over m free variables
{x | ∃a ∈ [−1, 1]m : g(a) = x}

I time bound tmax

Compute the function h(t, a):

I it is the solution to the ODE: dh(t, a)/dt = f (h(t, a))

I h(0, a) = g(a)

f (x) and g(a) given as Chebyshev function enclosures

10 / 18

Initial Value Problem

Given the input:

I system of n differential equations ẋ = f (x)

I initial values over m free variables
{x | ∃a ∈ [−1, 1]m : g(a) = x}

I time bound tmax

Compute the function h(t, a):

I it is the solution to the ODE: dh(t, a)/dt = f (h(t, a))

I h(0, a) = g(a)

f (x) and g(a) given as Chebyshev function enclosures

10 / 18

Initial Value Problem

Given the input:

I system of n differential equations ẋ = f (x)

I initial values over m free variables
{x | ∃a ∈ [−1, 1]m : g(a) = x}

I time bound tmax

Compute the function h(t, a):

I it is the solution to the ODE: dh(t, a)/dt = f (h(t, a))

I h(0, a) = g(a)

f (x) and g(a) given as Chebyshev function enclosures

10 / 18

Picard Iteration

We set h0(t, a) := 0

Application of Picard operator:
Compute a sequence of enclosures for the recurrence
hi+1(t, a) := g(a) + tmax

∫ t
0 f (hi (t, a))dt

In case of convergence, the sequence of hi converges to h(t, a)

In case of non-convergent sequence: tmax can be reduced and
muli-step method can be applied

11 / 18

Picard Iteration

We set h0(t, a) := 0

Application of Picard operator:
Compute a sequence of enclosures for the recurrence
hi+1(t, a) := g(a) + tmax

∫ t
0 f (hi (t, a))dt

In case of convergence, the sequence of hi converges to h(t, a)

In case of non-convergent sequence: tmax can be reduced and
muli-step method can be applied

11 / 18

Wrapping Effect

The exponential growth of the error due to re-packaging of the
solution in each step

The wrapped object may be of complex non-convex shape

12 / 18

Wrapping Effect

The exponential growth of the error due to re-packaging of the
solution in each step

The wrapped object may be of complex non-convex shape

12 / 18

New Method for Wrapping Effect Suppression

In rigorous Picard operator:
Hi+1(t, a) := G (a) + tmax

∫ t
0 F (Hi (t, a))dt

if G (a) contains non-empty error interval:
→ same error interval is added in each operator application

The dependency problem is introduced

Solution: Make the error interval disappear

Additional variables p are used to parametrize the error interval

We construct error-free G ′(a,p) that describes the same initial set

G ′(a,p) is used instead of G (a) to compute H ′(t, a,p)

Similar idea used for multi-step wrapping effect suppression

13 / 18

New Method for Wrapping Effect Suppression

In rigorous Picard operator:
Hi+1(t, a) := G (a) + tmax

∫ t
0 F (Hi (t, a))dt

if G (a) contains non-empty error interval:
→ same error interval is added in each operator application

The dependency problem is introduced

Solution: Make the error interval disappear

Additional variables p are used to parametrize the error interval

We construct error-free G ′(a,p) that describes the same initial set

G ′(a,p) is used instead of G (a) to compute H ′(t, a,p)

Similar idea used for multi-step wrapping effect suppression

13 / 18

New Method for Wrapping Effect Suppression

In rigorous Picard operator:
Hi+1(t, a) := G (a) + tmax

∫ t
0 F (Hi (t, a))dt

if G (a) contains non-empty error interval:
→ same error interval is added in each operator application

The dependency problem is introduced

Solution: Make the error interval disappear

Additional variables p are used to parametrize the error interval

We construct error-free G ′(a,p) that describes the same initial set

G ′(a,p) is used instead of G (a) to compute H ′(t, a,p)

Similar idea used for multi-step wrapping effect suppression

13 / 18

New Method for Wrapping Effect Suppression

In rigorous Picard operator:
Hi+1(t, a) := G (a) + tmax

∫ t
0 F (Hi (t, a))dt

if G (a) contains non-empty error interval:
→ same error interval is added in each operator application

The dependency problem is introduced

Solution: Make the error interval disappear

Additional variables p are used to parametrize the error interval

We construct error-free G ′(a,p) that describes the same initial set

G ′(a,p) is used instead of G (a) to compute H ′(t, a,p)

Similar idea used for multi-step wrapping effect suppression

13 / 18

New Method for Wrapping Effect Suppression

In rigorous Picard operator:
Hi+1(t, a) := G (a) + tmax

∫ t
0 F (Hi (t, a))dt

if G (a) contains non-empty error interval:
→ same error interval is added in each operator application

The dependency problem is introduced

Solution: Make the error interval disappear

Additional variables p are used to parametrize the error interval

We construct error-free G ′(a,p) that describes the same initial set

G ′(a,p) is used instead of G (a) to compute H ′(t, a,p)

Similar idea used for multi-step wrapping effect suppression

13 / 18

New Method for Wrapping Effect Suppression

In rigorous Picard operator:
Hi+1(t, a) := G (a) + tmax

∫ t
0 F (Hi (t, a))dt

if G (a) contains non-empty error interval:
→ same error interval is added in each operator application

The dependency problem is introduced

Solution: Make the error interval disappear

Additional variables p are used to parametrize the error interval

We construct error-free G ′(a,p) that describes the same initial set

G ′(a,p) is used instead of G (a) to compute H ′(t, a,p)

Similar idea used for multi-step wrapping effect suppression

13 / 18

Implementation and Extensions

Rigorous IVP solver implemented in C++ with both Taylor and
Chebyshev function enclosures

Multi-precision extension:

I double polynomial coefficients can be replaced with more
precise data type

I High precision results can be used to verify numerical results
and low-precision results

Multi-processor support:

I All data structures can be used in parallel execution

I Solving high dimension problems is executed in parallel

14 / 18

Implementation and Extensions

Rigorous IVP solver implemented in C++ with both Taylor and
Chebyshev function enclosures

Multi-precision extension:

I double polynomial coefficients can be replaced with more
precise data type

I High precision results can be used to verify numerical results
and low-precision results

Multi-processor support:

I All data structures can be used in parallel execution

I Solving high dimension problems is executed in parallel

14 / 18

Implementation and Extensions

Rigorous IVP solver implemented in C++ with both Taylor and
Chebyshev function enclosures

Multi-precision extension:

I double polynomial coefficients can be replaced with more
precise data type

I High precision results can be used to verify numerical results
and low-precision results

Multi-processor support:

I All data structures can be used in parallel execution

I Solving high dimension problems is executed in parallel

14 / 18

Computational Experiments

Comparison of Taylor and Chebyshev polynomial enclosures:

Problem (degree) Taylor Chebyshev

Volterra (10) 1.1E-6 5.7E-9
Volterra (12) 3.4E-8 5.2E-11
Volterra (14) 1.1E-9 9.8E-13

Roessler (12) 1.8E-6 1.4E-8
Roessler (14) 1.2E-7 2.7E-10
Roessler (16) 9E-9 5.7E-12
Roessler (18) 6.6E-10 5.3E-13

15 / 18

VERICOMP Computation Experiments

VERICOMP - A System for Comparing Verified IVP Solvers
http://vericomp.inf.uni-due.de/

Best result in VERICOMP Our tool
N VNODE LP RIOT Width Time

1 2 4.67079 0.01s 10.1 2s 4.67078 0.08s
2 3 0.232544 0.01s 0.235 0.7s 0.232544 0.03s
3 1 0.89 0.01s 0.44 40s 0.38 0.12s
4 2 0.073 0.02s 0.067569 38s 0.067561 0.4s
5 51 0.21527 2s N/A 0.21527 18s
6 30 2.95E-5 3s N/A 2.54E-5 160s
28 2 N/A N/A 1.018 6s

In benchmarks 1 to 5, the results from our tool match optimal
interval width in all displayed digits.

16 / 18

http://vericomp.inf.uni-due.de/

Conclusion

Method for rigorous computation with multivariate function
enclosures in Chebyshev basis

Provides verified enclosure for various polynomial operations

Used in tool for rigorous solution of initial value problem for ODE

New wrapping effect suppression method proposed

Implementation available (open source) from:
http://odeintegrator.souceforge.net

17 / 18

http://odeintegrator.souceforge.net

Conclusion

Method for rigorous computation with multivariate function
enclosures in Chebyshev basis

Provides verified enclosure for various polynomial operations

Used in tool for rigorous solution of initial value problem for ODE

New wrapping effect suppression method proposed

Implementation available (open source) from:
http://odeintegrator.souceforge.net

17 / 18

http://odeintegrator.souceforge.net

Conclusion

Method for rigorous computation with multivariate function
enclosures in Chebyshev basis

Provides verified enclosure for various polynomial operations

Used in tool for rigorous solution of initial value problem for ODE

New wrapping effect suppression method proposed

Implementation available (open source) from:
http://odeintegrator.souceforge.net

17 / 18

http://odeintegrator.souceforge.net

Conclusion

Method for rigorous computation with multivariate function
enclosures in Chebyshev basis

Provides verified enclosure for various polynomial operations

Used in tool for rigorous solution of initial value problem for ODE

New wrapping effect suppression method proposed

Implementation available (open source) from:
http://odeintegrator.souceforge.net

17 / 18

http://odeintegrator.souceforge.net

Conclusion

Method for rigorous computation with multivariate function
enclosures in Chebyshev basis

Provides verified enclosure for various polynomial operations

Used in tool for rigorous solution of initial value problem for ODE

New wrapping effect suppression method proposed

Implementation available (open source) from:
http://odeintegrator.souceforge.net

17 / 18

http://odeintegrator.souceforge.net

Ongoing, Future Work

Planned tool improvements:

I Implementation of time step control

I Allow trigonometric functions on input

I Improved handling of equations with many variables

Use the method for reachability analysis in hybrid system
verification

Thank you for you attention.

18 / 18

Ongoing, Future Work

Planned tool improvements:

I Implementation of time step control

I Allow trigonometric functions on input

I Improved handling of equations with many variables

Use the method for reachability analysis in hybrid system
verification

Thank you for you attention.

18 / 18

Ongoing, Future Work

Planned tool improvements:

I Implementation of time step control

I Allow trigonometric functions on input

I Improved handling of equations with many variables

Use the method for reachability analysis in hybrid system
verification

Thank you for you attention.

18 / 18

[1] K. Makino and M. Berz. Taylor models and other validated
functional inclusion methods. International Journal of Pure and
Applied Mathematics, 4(4):379–456, 2003.

18 / 18

	Reference

