Rigorous Computation with Function Enclosures in Chebyshev Basis

Tomáš Dzetkulič

Institute of Computer Science
Academy of Sciences of the Czech Republic

27th of September 2012

Rigorous Computation and Initial Value Problem in ODE
Lorentz system:
$\dot{x}=10(y-x)$
$\dot{y}=x(28-z)-y$
$\dot{z}=x y-8 z / 3$
$x(0)=15 ; y(0)=15 ; z(0)=36$

Rigorous Computation and Initial Value Problem in ODE
Lorentz system:
$\dot{x}=10(y-x)$
$\dot{y}=x(28-z)-y$
$\dot{z}=x y-8 z / 3$
$x(0)=15 ; y(0)=15 ; z(0)=36$
Using Matlab ode45, we get numerical solution:

$$
\begin{array}{ccc}
& \text { ATol }=\text { RTol }=10^{-10} & \text { ATol }=\text { RTol }=10^{-16} \\
\times(50) & 6.85806551 & 4.89309707 \\
\mathrm{y}(50) & -1.82131145 & 7.51188676 \\
\mathrm{z}(50) & 34.13364729 & 16.64840204
\end{array}
$$

Rigorous Computation and Initial Value Problem in ODE
Lorentz system:
$\dot{x}=10(y-x)$
$\dot{y}=x(28-z)-y$
$\dot{z}=x y-8 z / 3$
$x(0)=15 ; y(0)=15 ; z(0)=36$
Using Matlab ode45, we get numerical solution:

	ATol $=$ RTol $=10^{-10}$	ATol $=$ RTol $=10^{-16}$
$\times(50)$	6.85806551	4.89309707
$\mathrm{y}(50)$	-1.82131145	7.51188676
$\mathrm{z}(50)$	34.13364729	16.64840204

Rigorous solution:
$x(50) \in[-0.4737,-0.4738]$
$y(50) \in[-5.13,-5.14]$
$z(50) \in[26.93,26.94]$

The Overview of the Contribution

We extend the work of Makino and Berz on Taylor Models
We replace the Taylor polynomial approximation in the Taylor Model with the Chebyshev polynomial approximation

The Overview of the Contribution

We extend the work of Makino and Berz on Taylor Models
We replace the Taylor polynomial approximation in the Taylor Model with the Chebyshev polynomial approximation

New rigorous methods for operations with the Chebyshev function enclosure are constructed

The Overview of the Contribution

We extend the work of Makino and Berz on Taylor Models
We replace the Taylor polynomial approximation in the Taylor Model with the Chebyshev polynomial approximation

New rigorous methods for operations with the Chebyshev function enclosure are constructed

Method is applied to the initial value problem of ordinary differential equations

Chebyshev Polynomials

Chebyshev polynomials of the first kind:
$T_{0}(x)=1$
$T_{1}(x)=x$
$T_{i}(x)=2 x T_{i-1}(x)-T_{i-2}(x)$ for $i \in\{2 . . \infty\}$

$$
T_{2}(x)=2 x^{2}-1 ; T_{3}(x)=4 x^{3}-3 x ; T_{4}(x)=8 x^{4}-8 x^{2}+1
$$

Chebyshev Polynomials

Chebyshev polynomials of the first kind:
$T_{0}(x)=1$
$T_{1}(x)=x$
$T_{i}(x)=2 x T_{i-1}(x)-T_{i-2}(x)$ for $i \in\{2 . . \infty\}$
$T_{2}(x)=2 x^{2}-1 ; T_{3}(x)=4 x^{3}-3 x ; T_{4}(x)=8 x^{4}-8 x^{2}+1$
Alternative form: $T_{i}(x)=\cos (i \arccos (x))$

Polynomial Function Enclosure

Taylor Model by Makino and Berz(2003):
For the function $f\left(x_{1}, \ldots, x_{n}\right)$ on the domain $[-1,1]^{n}$: $f\left(x_{1}, \ldots, x_{n}\right) \in\left(\sum_{\left(i_{1}, \ldots, i_{n}\right)} a_{\left(i_{1}, \ldots, i_{n}\right)} \prod_{j} x_{j}^{i_{j}}\right)+\left[-e_{l o}, e_{h i}\right]$

Polynomial Function Enclosure

Taylor Model by Makino and Berz(2003):
For the function $f\left(x_{1}, \ldots, x_{n}\right)$ on the domain $[-1,1]^{n}$: $f\left(x_{1}, \ldots, x_{n}\right) \in\left(\sum_{\left(i_{1}, \ldots, i_{n}\right)} a_{\left(i_{1}, \ldots, i_{n}\right)} \prod_{j} x_{j}^{i_{j}}\right)+\left[-e_{l o}, e_{h i}\right]$

Example: $f(x, y)=y \sin (x)$ on $[-1,1]^{2}$:

$$
x y+0.1666 x^{3} y+[-0.01,0.01]
$$

Polynomial Function Enclosure

Taylor Model by Makino and Berz(2003):
For the function $f\left(x_{1}, \ldots, x_{n}\right)$ on the domain $[-1,1]^{n}$:
$f\left(x_{1}, \ldots, x_{n}\right) \in\left(\sum_{\left(i_{1}, \ldots, i_{n}\right)} a_{\left(i_{1}, \ldots, i_{n}\right)} \prod_{j} x_{j}^{i_{j}}\right)+\left[-e_{l o}, e_{h i}\right]$
Example: $f(x, y)=y \sin (x)$ on $[-1,1]^{2}$:

$$
x y+0.1666 x^{3} y+[-0.01,0.01]
$$

Makino and $\operatorname{Berz}(2003)$ claim, that:

- Magnitude of the Chebyshev series coefficients is higher compared to the Taylor series
- Chebyshev polynomial multiplication sub-optimal
\rightarrow Chebyshev polynomials not suitable for rigorous computation

Chebyshev Function Enclosure

We show that:

- The Chebyshev series never lead to an increase in the magnitude of the coefficients
- Although sub-optimal, the Chebyshev polynomial multiplication gives better approximation compared to the Taylor multiplication

Chebyshev Function Enclosure

We show that:

- The Chebyshev series never lead to an increase in the magnitude of the coefficients
- Although sub-optimal, the Chebyshev polynomial multiplication gives better approximation compared to the Taylor multiplication

We introduce the Chebyshev function enclosure of the form:
For the function $f\left(x_{1}, \ldots, x_{n}\right)$ on the domain $[-1,1]^{n}$: $f\left(x_{1}, \ldots, x_{n}\right) \in\left(\sum_{\left(i_{1}, \ldots, i_{n}\right)} a_{\left(i_{1}, \ldots, i_{n}\right)} \prod_{j} T_{i_{j}}\left(x_{j}\right)\right)+[-e, e]$

Function Enclosure Operations

The operations with function enclosures:

- Addition and substraction - simple term based algorithm
- Multiplication - new recursive algorithm

Function Enclosure Operations

The operations with function enclosures:

- Addition and substraction - simple term based algorithm
- Multiplication - new recursive algorithm
- Composition - Clenshaw algorithm
- Division, square root, exp - application of composition

Function Enclosure Operations

The operations with function enclosures:

- Addition and substraction - simple term based algorithm
- Multiplication - new recursive algorithm
- Composition - Clenshaw algorithm
- Division, square root, exp - application of composition
- Integration and derivative - reordering of coefficients

Problems with Chebyshev Polynomials Multiplication

$T_{i}(x) \times T_{j}(x)=\left(T_{i+j}(x)+T_{|i-j|}(x)\right) / 2$
Low order terms of the result depend on high order terms

Problems with Chebyshev Polynomials Multiplication

$T_{i}(x) \times T_{j}(x)=\left(T_{i+j}(x)+T_{|i-j|}(x)\right) / 2$
Low order terms of the result depend on high order terms
Given the truncated Chebyshev series of $f_{1}(x)$ and $f_{2}(x)$:

- impossible to compute the truncated series for $f_{1}(x) \times f_{2}(x)$

Problems with Chebyshev Polynomials Multiplication

$T_{i}(x) \times T_{j}(x)=\left(T_{i+j}(x)+T_{|i-j|}(x)\right) / 2$
Low order terms of the result depend on high order terms
Given the truncated Chebyshev series of $f_{1}(x)$ and $f_{2}(x)$:

- impossible to compute the truncated series for $f_{1}(x) \times f_{2}(x)$

Multiplication of two n-variate terms gives 2^{n} term result:
$\left(T_{1}(x) T_{1}(y)\right) \times\left(T_{2}(x) T_{3}(y)\right)=$
$\left(T_{1}(x) T_{2}(y)+T_{1}(x) T_{4}(y)+T_{3}(x) T_{2}(y)+T_{3}(x) T_{4}(y)\right) / 4$

Recursive Polynomial Multiplication Algorithm

Task: Compute $F\left(x_{1}, \ldots, x_{n}\right) \times G\left(x_{1}, \ldots, x_{n}\right)$ with degree deg polynomials

Recursive Polynomial Multiplication Algorithm

Task: Compute $F\left(x_{1}, \ldots, x_{n}\right) \times G\left(x_{1}, \ldots, x_{n}\right)$ with degree deg polynomials

1. Separate variable x_{1} :

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{\operatorname{deg}} F_{i}\left(x_{2}, \ldots, x_{n}\right) T_{i}\left(x_{1}\right) \\
& G\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{\operatorname{deg}} G_{i}\left(x_{2}, \ldots, x_{n}\right) T_{i}\left(x_{1}\right)
\end{aligned}
$$

Recursive Polynomial Multiplication Algorithm

Task: Compute $F\left(x_{1}, \ldots, x_{n}\right) \times G\left(x_{1}, \ldots, x_{n}\right)$ with degree deg polynomials

1. Separate variable x_{1} :
$F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{\operatorname{deg}} F_{i}\left(x_{2}, \ldots, x_{n}\right) T_{i}\left(x_{1}\right)$
$G\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{\text {deg }} G_{i}\left(x_{2}, \ldots, x_{n}\right) T_{i}\left(x_{1}\right)$
2. For each pair F_{i}, G_{j} recursively compute $P_{(i, j)}=F_{i} \times G_{j}$

Recursive Polynomial Multiplication Algorithm

Task: Compute $F\left(x_{1}, \ldots, x_{n}\right) \times G\left(x_{1}, \ldots, x_{n}\right)$ with degree deg polynomials

1. Separate variable x_{1} :
$F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{\text {deg }} F_{i}\left(x_{2}, \ldots, x_{n}\right) T_{i}\left(x_{1}\right)$
$G\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{\operatorname{deg}} G_{i}\left(x_{2}, \ldots, x_{n}\right) T_{i}\left(x_{1}\right)$
2. For each pair F_{i}, G_{j} recursively compute $P_{(i, j)}=F_{i} \times G_{j}$
3. For all i set $R_{i}:=0$
4. Add $P_{(i, j)} / 2$ to R_{i+j} and $R_{|i-j|}$

Recursive Polynomial Multiplication Algorithm

Task: Compute $F\left(x_{1}, \ldots, x_{n}\right) \times G\left(x_{1}, \ldots, x_{n}\right)$ with degree deg polynomials

1. Separate variable x_{1} :
$F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{\text {deg }} F_{i}\left(x_{2}, \ldots, x_{n}\right) T_{i}\left(x_{1}\right)$
$G\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{\operatorname{deg}} G_{i}\left(x_{2}, \ldots, x_{n}\right) T_{i}\left(x_{1}\right)$
2. For each pair F_{i}, G_{j} recursively compute $P_{(i, j)}=F_{i} \times G_{j}$
3. For all i set $R_{i}:=0$
4. Add $P_{(i, j)} / 2$ to R_{i+j} and $R_{|i-j|}$
5. Construct the result: $\sum_{i=0}^{2 \mathrm{deg}} R_{i}\left(x_{2}, \ldots, x_{n}\right) T_{i}\left(x_{1}\right)$

Recursive Polynomial Multiplication Algorithm

Task: Compute $F\left(x_{1}, \ldots, x_{n}\right) \times G\left(x_{1}, \ldots, x_{n}\right)$ with degree deg polynomials

1. Separate variable x_{1} :
$F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{\text {deg }} F_{i}\left(x_{2}, \ldots, x_{n}\right) T_{i}\left(x_{1}\right)$
$G\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{\operatorname{deg}} G_{i}\left(x_{2}, \ldots, x_{n}\right) T_{i}\left(x_{1}\right)$
2. For each pair F_{i}, G_{j} recursively compute $P_{(i, j)}=F_{i} \times G_{j}$
3. For all i set $R_{i}:=0$
4. Add $P_{(i, j)} / 2$ to R_{i+j} and $R_{|i-j|}$
5. Construct the result: $\sum_{i=0}^{2 \mathrm{deg}} R_{i}\left(x_{2}, \ldots, x_{n}\right) T_{i}\left(x_{1}\right)$
$2 \mathrm{deg}^{2}$ function enclosures $P_{(i, j)} / 2$, but only $2 \operatorname{deg} R_{i}$
\rightarrow huge cancellation in step 4 of the algorithm

Initial Value Problem

Given the input:

- system of n differential equations $\dot{\mathbf{x}}=f(\mathbf{x})$
- initial values over m free variables
$\left\{\mathbf{x} \mid \exists \mathbf{a} \in[-1,1]^{m}: g(\mathbf{a})=\mathbf{x}\right\}$
- time bound $t_{\text {max }}$

Initial Value Problem

Given the input:

- system of n differential equations $\dot{\mathbf{x}}=f(\mathbf{x})$
- initial values over m free variables

$$
\left\{\mathbf{x} \mid \exists \mathbf{a} \in[-1,1]^{m}: g(\mathbf{a})=\mathbf{x}\right\}
$$

- time bound $t_{\text {max }}$

Compute the function $h(t, \mathbf{a})$:

- it is the solution to the ODE: $d h(t, \mathbf{a}) / d t=f(h(t, \mathbf{a}))$
- $h(0, \mathbf{a})=g(\mathbf{a})$

Initial Value Problem

Given the input:

- system of n differential equations $\dot{\mathbf{x}}=f(\mathbf{x})$
- initial values over m free variables

$$
\left\{\mathbf{x} \mid \exists \mathbf{a} \in[-1,1]^{m}: g(\mathbf{a})=\mathbf{x}\right\}
$$

- time bound $t_{\text {max }}$

Compute the function $h(t, \mathbf{a})$:

- it is the solution to the ODE: $d h(t, \mathbf{a}) / d t=f(h(t, \mathbf{a}))$
- $h(0, \mathbf{a})=g(\mathbf{a})$
$f(\mathbf{x})$ and $g(\mathbf{a})$ given as Chebyshev function enclosures

Picard Iteration

We set $h_{0}(t, \mathbf{a}):=0$
Application of Picard operator:
Compute a sequence of enclosures for the recurrence $h_{i+1}(t, \mathbf{a}):=g(\mathbf{a})+t_{\max } \int_{0}^{t} f\left(h_{i}(t, \mathbf{a})\right) d t$

Picard Iteration

We set $h_{0}(t, \mathbf{a}):=0$
Application of Picard operator:
Compute a sequence of enclosures for the recurrence $h_{i+1}(t, \mathbf{a}):=g(\mathbf{a})+t_{\max } \int_{0}^{t} f\left(h_{i}(t, \mathbf{a})\right) d t$

In case of convergence, the sequence of h_{i} converges to $h(t, \mathbf{a})$
In case of non-convergent sequence: $t_{\max }$ can be reduced and muli-step method can be applied

Wrapping Effect

The exponential growth of the error due to re-packaging of the solution in each step

Wrapping Effect

The exponential growth of the error due to re-packaging of the solution in each step

The wrapped object may be of complex non-convex shape

New Method for Wrapping Effect Suppression

In rigorous Picard operator:
$H_{i+1}(t, \mathbf{a}):=G(\mathbf{a})+t_{\max } \int_{0}^{t} F\left(H_{i}(t, \mathbf{a})\right) d t$
if $G(\mathbf{a})$ contains non-empty error interval:
\rightarrow same error interval is added in each operator application

New Method for Wrapping Effect Suppression

In rigorous Picard operator:
$H_{i+1}(t, \mathbf{a}):=G(\mathbf{a})+t_{\max } \int_{0}^{t} F\left(H_{i}(t, \mathbf{a})\right) d t$
if $G(\mathbf{a})$ contains non-empty error interval:
\rightarrow same error interval is added in each operator application
The dependency problem is introduced

New Method for Wrapping Effect Suppression

In rigorous Picard operator:
$H_{i+1}(t, \mathbf{a}):=G(\mathbf{a})+t_{\max } \int_{0}^{t} F\left(H_{i}(t, \mathbf{a})\right) d t$
if $G(\mathbf{a})$ contains non-empty error interval:
\rightarrow same error interval is added in each operator application
The dependency problem is introduced
Solution: Make the error interval disappear

New Method for Wrapping Effect Suppression

In rigorous Picard operator:
$H_{i+1}(t, \mathbf{a}):=G(\mathbf{a})+t_{\max } \int_{0}^{t} F\left(H_{i}(t, \mathbf{a})\right) d t$
if $G(a)$ contains non-empty error interval:
\rightarrow same error interval is added in each operator application
The dependency problem is introduced
Solution: Make the error interval disappear
Additional variables \mathbf{p} are used to parametrize the error interval
We construct error-free $G^{\prime}(\mathbf{a}, \mathbf{p})$ that describes the same initial set

New Method for Wrapping Effect Suppression

In rigorous Picard operator:
$H_{i+1}(t, \mathbf{a}):=G(\mathbf{a})+t_{\max } \int_{0}^{t} F\left(H_{i}(t, \mathbf{a})\right) d t$
if $G(\mathbf{a})$ contains non-empty error interval:
\rightarrow same error interval is added in each operator application
The dependency problem is introduced
Solution: Make the error interval disappear
Additional variables \mathbf{p} are used to parametrize the error interval
We construct error-free $G^{\prime}(\mathbf{a}, \mathbf{p})$ that describes the same initial set
$G^{\prime}(\mathbf{a}, \mathbf{p})$ is used instead of $G(\mathbf{a})$ to compute $H^{\prime}(t, \mathbf{a}, \mathbf{p})$

New Method for Wrapping Effect Suppression

In rigorous Picard operator:
$H_{i+1}(t, \mathbf{a}):=G(\mathbf{a})+t_{\max } \int_{0}^{t} F\left(H_{i}(t, \mathbf{a})\right) d t$
if $G(\mathbf{a})$ contains non-empty error interval:
\rightarrow same error interval is added in each operator application
The dependency problem is introduced
Solution: Make the error interval disappear
Additional variables \mathbf{p} are used to parametrize the error interval
We construct error-free $G^{\prime}(\mathbf{a}, \mathbf{p})$ that describes the same initial set
$G^{\prime}(\mathbf{a}, \mathbf{p})$ is used instead of $G(\mathbf{a})$ to compute $H^{\prime}(t, \mathbf{a}, \mathbf{p})$
Similar idea used for multi-step wrapping effect suppression

Implementation and Extensions

Rigorous IVP solver implemented in C ++ with both Taylor and Chebyshev function enclosures

Implementation and Extensions

Rigorous IVP solver implemented in C++ with both Taylor and Chebyshev function enclosures

Multi-precision extension:

- double polynomial coefficients can be replaced with more precise data type
- High precision results can be used to verify numerical results and low-precision results

Implementation and Extensions

Rigorous IVP solver implemented in C ++ with both Taylor and
Chebyshev function enclosures
Multi-precision extension:

- double polynomial coefficients can be replaced with more precise data type
- High precision results can be used to verify numerical results and low-precision results

Multi-processor support:

- All data structures can be used in parallel execution
- Solving high dimension problems is executed in parallel

Computational Experiments

Comparison of Taylor and Chebyshev polynomial enclosures:

Problem (degree)	Taylor	Chebyshev
Volterra (10)	$1.1 \mathrm{E}-6$	$5.7 \mathrm{E}-9$
Volterra (12)	$3.4 \mathrm{E}-8$	$5.2 \mathrm{E}-11$
Volterra (14)	$1.1 \mathrm{E}-9$	$9.8 \mathrm{E}-13$
Roessler (12)	$1.8 \mathrm{E}-6$	$1.4 \mathrm{E}-8$
Roessler (14)	$1.2 \mathrm{E}-7$	$2.7 \mathrm{E}-10$
Roessler (16)	$9 \mathrm{E}-9$	$5.7 \mathrm{E}-12$
Roessler (18)	$6.6 \mathrm{E}-10$	$5.3 \mathrm{E}-13$

VERICOMP Computation Experiments

VERICOMP - A System for Comparing Verified IVP Solvers http://vericomp.inf.uni-due.de/

		Best	ult	RICOMP		Our	
\#	N	VNODE	LP	RIOT		Width	Time
1	2	4.67079	0.01s	10.1	2s	4.67078	0.08s
2	3	0.232544	0.01s	0.235	0.7s	0.232544	0.03s
3	1	0.89	0.01s	0.44	40s	0.38	0.12s
4	2	0.073	0.02s	0.067569	38s	0.067561	0.4 s
5	51	0.21527	2 s	N/A		0.21527	18s
6	30	2.95E-5 3s		N/A		$2.54 \mathrm{E}-5$	160s
28	2	N/A		N/A		1.018	6 s

In benchmarks 1 to 5, the results from our tool match optimal interval width in all displayed digits.

Conclusion

Method for rigorous computation with multivariate function enclosures in Chebyshev basis

Conclusion

Method for rigorous computation with multivariate function enclosures in Chebyshev basis

Provides verified enclosure for various polynomial operations

Conclusion

Method for rigorous computation with multivariate function enclosures in Chebyshev basis

Provides verified enclosure for various polynomial operations
Used in tool for rigorous solution of initial value problem for ODE

Conclusion

Method for rigorous computation with multivariate function enclosures in Chebyshev basis

Provides verified enclosure for various polynomial operations
Used in tool for rigorous solution of initial value problem for ODE
New wrapping effect suppression method proposed

Conclusion

Method for rigorous computation with multivariate function enclosures in Chebyshev basis

Provides verified enclosure for various polynomial operations
Used in tool for rigorous solution of initial value problem for ODE
New wrapping effect suppression method proposed
Implementation available (open source) from:
http://odeintegrator.souceforge.net

Ongoing, Future Work

Planned tool improvements:

- Implementation of time step control
- Allow trigonometric functions on input
- Improved handling of equations with many variables

Ongoing, Future Work

Planned tool improvements:

- Implementation of time step control
- Allow trigonometric functions on input
- Improved handling of equations with many variables

Use the method for reachability analysis in hybrid system verification

Ongoing, Future Work

Planned tool improvements:

- Implementation of time step control
- Allow trigonometric functions on input
- Improved handling of equations with many variables

Use the method for reachability analysis in hybrid system verification

Thank you for you attention.
[1] K. Makino and M. Berz. Taylor models and other validated functional inclusion methods. International Journal of Pure and Applied Mathematics, 4(4):379-456, 2003.

