${ }^{1}$ Computational Sciences Program
${ }^{2}$ Environmental Science and Engineering Program
${ }^{3}$ Department of Geological Sciences
${ }^{4}$ Cyber-ShARE Center
University of Texas, El Paso, Texas 79968, USA
Page 1 of 14

Go Back
christains@utep.edu, ctweedie@utep.edu,
velasco@geo.utep.edu

```
Full Screen
```

- Usually, a meas. error $\Delta x \stackrel{\text { def }}{=} \widetilde{x}-x$ is subdivided into
- The random errors $\Delta_{r} x$ corresponding to different measurements are usually assumed to be independent.
- For $\Delta_{s} x$, we only know the upper bound Δ_{s} s.t. $\left|\Delta_{s} x\right| \leq \Delta_{s}$, i.e., that $\Delta_{s} x$ is in the interval $\left[-\Delta_{s}, \Delta_{s}\right]$.
- Because of this fact, interval computations are used for processing the systematic errors.
- $\Delta_{r} x$ is usually characterized by the corr. probability distribution (usually Gaussian, with known σ).

Title Page

Problem

```
Analysis of the Problem
```

- In this model, the difference $\Delta x-\Delta_{s} x$ is represented as a combination of:
- a "truly random" error $\Delta_{t} x$ (which is independent from one measurement to another), and
- a new "periodic" component $\Delta_{p} x$.
- We provide a theoretical explanation for this heuristic three-component model.

$$
L=\left\{c_{1} \cdot x_{1}(t)+\ldots+c_{n} \cdot x_{n}(t): c_{1}, \ldots, c_{n} \in \mathbb{R}\right\}
$$

- In most applications, signals are smooth and bounded, so we assume that $x_{i}(t)$ is smooth and bounded.
- Finally, for a long series of observations, we can choose a starting point arbitrarily: $t \rightarrow t+t_{0}$.
- It is reasonable to require that this change keeps us within the same component, i.e.,

$$
x(t) \in L \Rightarrow x\left(t+t_{0}\right) \in L
$$

- A function $x(t)$ of one variable is called bounded if

$$
\exists M \forall t(|x(t)| \leq M) .
$$

- We say that a class F of functions of one variable is shift-invariant if

$$
\forall x(t)\left(x(t) \in F \Rightarrow \forall t_{0}\left(x\left(t+t_{0}\right) \in F\right)\right) .
$$

- By an error component we mean a shift-invariant finitedimensional linear space of functions

$$
L=\left\{c_{1} \cdot x_{1}(t)+\ldots+c_{n} \cdot x_{n}(t): c_{i} \in \mathbb{R}\right\} .
$$

- Theorem: Every error component is a linear combination of the functions

$$
x(t)=\sin (\omega \cdot t) \text { and } x(t)=\cos (\omega \cdot t) .
$$

5. Proof of the Main Result

- Shift-invariance means that, for some $c_{i}\left(t_{0}\right)$, we have

$$
x_{i}\left(t+t_{0}\right)=c_{i 1}\left(t_{0}\right) \cdot x_{1}(t)+\ldots+c_{i n}\left(t_{0}\right) \cdot x_{n}(t)
$$

- For n different values $t=t_{1}, \ldots, t=t_{n}$, we get a system of n linear equations with n unknowns $c_{i j}\left(t_{0}\right)$.
- The Cramer's rule solution to linear equations is a smooth function of all the coeff. \& right-hand sides.

Problem

Analysis of the Problem

Definitions and the

Proof of the Main Result
Practical Conclusions

How to Propagate

Propagating Periodic
Propagating Periodic-
Home Page

Title Page

- Since all the right-hand sides $x_{i}\left(t_{j}+t_{0}\right)$ and coefficients $x_{i}\left(t_{j}\right)$ are smooth, $c_{i j}\left(t_{0}\right)$ are also smooth.
- Differentiating w.r.t. t_{0} and taking $t_{0}=0$, for $c_{i j} \xlongequal{\text { def }}$ $\dot{c}_{i j}(0)$, we get

$$
\dot{x}_{i}(t)=c_{i 1} \cdot x_{1}(t)+\ldots+c_{i n} \cdot x_{n}(t)
$$

- Reminder: $\dot{x}_{i}(t)=c_{i 1} \cdot x_{1}(t)+\ldots+c_{i n} \cdot x_{n}(t)$.
- A general solution of such system of equations is a linear combination of functions

$$
t^{k} \cdot \exp (\lambda \cdot t), \quad \mathrm{w} / k \in \mathrm{~N}, k \geq 0, \lambda=a+\mathrm{i} \cdot \omega \in \mathrm{C}
$$

- Here,

Problem

Analysis of the Problem

Definitions and the

Proof of the Main Result

$$
\exp (\lambda \cdot t)=\exp (a \cdot t) \cdot \cos (\omega \cdot t)+\mathrm{i} \cdot \exp (a \cdot t) \cdot \sin (\omega \cdot t)
$$

- When $a \neq 0$, we get unbounded functions for $t \rightarrow \infty$ or $t \rightarrow-\infty$.
- So, $a=0$.
- For $k>0$, we get unbounded $t^{k} ;$ so, $k=0$.
- Thus, we indeed have a linear combination of sinusoids.

Page 7 of 14

Go Back

Full Screen

Close

7. Practical Conclusions

Problem

Analysis of the Problem

Definitions and the

Proof of the Main Result

Practical Conclusions

How to Propagate

Propagating Periodic
Propagating Periodic-
Home Page

- Thus, we can identify such low-frequency components with systematic error component.
- When $\omega \gg f$, the phases of the values $\cos \left(\omega \cdot t_{i}\right)$ and $\cos \left(\omega \cdot t_{i+1}\right)$ differ a lot.
- For all practical purposes, the resulting values of cosine or sine functions are independent.
- Thus, high-frequency components can be identified with random error component.

Title Page

- Result: every error component is a linear combination of $\cos (\omega \cdot t)$ and $\sin (\omega \cdot t)$.
- Notation: let f be the measurements frequency (how many measurements we perform per unit time).
- Reminder:
- we can identify low-frequency components $(\omega \ll f)$ with systematic error component;

Problem

Analysis of the Problem

Definitions and the

Proof of the Main Result
Practical Conclusions

How to Propagate

Propagating Periodic
Propagating Periodic-
Home Page

Title Page

- we can identify high-frequency ones $(\omega \gg f)$ with random error component.
- Easy to see: all other error components $\cos (\omega \cdot t)$ and $\sin (\omega \cdot t)$ are periodic.
- Conclusion: we have indeed justified to the semi-empirical 3 -component model of measurement error.

9. How to Propagate Uncertainty in the ThreeComponent Model

- We are interested in the quantity
$y=f\left(x_{1}\left(t_{11}\right), x_{1}\left(t_{12}\right), \ldots, x_{2}\left(t_{21}\right), x_{2}\left(t_{22}\right), \ldots, x_{n}\left(t_{n 1}\right), x_{n}\left(t_{n 2}\right), \ldots\right)$
- Instead of the actual values $x_{i}\left(t_{i j}\right)$, we only know the measurement results $\widetilde{x}_{i}\left(t_{i j}\right)=x_{i}\left(t_{i j}\right)+\Delta x_{i}\left(t_{i j}\right)$.
- Measurement errors are usually small, so terms quadratic (and higher) in $\Delta x_{i}\left(t_{i j}\right)$ can be safely ignored.

Title Page

- For example, if the measurement error is 10%, its square is 1% which is much much smaller than 10%.
- If the measurement error is 1%, its square is 0.01% which is much much smaller than 1%.

Page 10 of 14

Go Back

- Thus, we can safely linearize the dependence of Δy on $\Delta x_{i}\left(t_{i j}\right)$.
- Reminder: we can safely linearize the dependence of Δy on $\Delta x_{i}\left(t_{i j}\right)$, so

$$
\Delta y=\sum_{i} \sum_{j} C_{i j} \cdot \Delta x_{i}\left(t_{i j}\right), \text { with } C_{i j} \stackrel{\text { def }}{=} \frac{\partial y}{\partial x_{i}\left(t_{i j}\right)} .
$$

- In general, $\Delta x_{i}\left(t_{i j}\right)=s_{i}+r_{i j}+\sum_{\ell} A_{\ell i} \cdot \cos \left(\omega_{\ell} \cdot t_{i j}+\varphi_{\ell i}\right)$.
- Due to linearity, we have $\Delta y=\Delta y_{s}+\Delta y_{r}+\sum_{\ell} \Delta y_{p \ell}$, where

$$
\begin{gathered}
\Delta y_{s}=\sum_{i} \sum_{j} C_{i j} \cdot s_{i} ; \quad \Delta y_{r}=\sum_{i} \sum_{j} C_{i j} \cdot r_{i j} ; \\
\Delta y_{p \ell}=\sum_{i} \sum_{j} C_{i j} \cdot A_{\ell i} \cdot \cos \left(\omega_{\ell} \cdot t_{i j}+\varphi_{\ell i}\right) .
\end{gathered}
$$

Problem

Analysis of the Problem

Definitions and the

Proof of the Main Result
Practical Conclusions
How to Propagate

Propagating Periodic
Propagating Periodic-
Home Page

Title Page

- We know: how to compute Δy_{s} and Δy_{r}.
- What is needed: propagation of the periodic component.

Close

 of $\Delta y_{p e}$ is close to normal, with 0 mean.- The variance of $\Delta y_{p \ell}$ is $\frac{1}{2} \cdot \sum_{i} A_{\ell i}^{2} \cdot\left(K_{c i}^{2}+K_{s i}^{2}\right)$.
- Each amplitude $A_{\ell i}$ can take any value from 0 to the known bound $P_{\ell i}$.
- Thus, the variance is bounded by $\frac{1}{2} \cdot \sum_{i} P_{\ell i}^{2} \cdot\left(K_{c i}^{2}+K_{s i}^{2}\right)$.
- So, we arrive at the following algorithm.

12. Propagating Periodic-Induced Component: Algorithm

- First, we apply the algorithm f to the measurement results $\widetilde{x}_{i}\left(t_{i j}\right)$ and get the estimate \widetilde{y}.
- Then, we select a small value δ and for each sensor i, we do the following:
- take $x_{i}^{(c i)}\left(t_{i j}\right)=\widetilde{x}_{i}\left(t_{i j}\right)+\delta \cdot \cos \left(\omega_{\ell} \cdot t_{i j}\right)$ for all moments j;
- for other sensors $i^{\prime} \neq i$, take $x_{i^{\prime}}^{(c i)}\left(t_{i^{\prime} j}\right)=\widetilde{x}_{i}\left(t_{i^{\prime} j}\right)$;
- substitute the resulting values $x_{i^{\prime}}^{(c i)}\left(t_{i^{\prime} j}\right)$ into the data processing algorithm f and get the result $y^{(c i)}$;
- then, take $x_{i}^{(s i)}\left(t_{i j}\right)=\widetilde{x}_{i}\left(t_{i j}\right)+\delta \cdot \sin \left(\omega_{\ell} \cdot t_{i j}\right)$ for all moments j;
- for all other $i^{\prime} \neq i$, take $x_{i^{\prime}}^{(s i)}\left(t_{i^{\prime} j}\right)=\widetilde{x}_{i}\left(t_{i^{\prime} j}\right)$;
- substitute the resulting values $x_{i^{\prime}}^{(s i)}\left(t_{i^{\prime} j}\right)$ into the data processing algorithm f and get the result $y^{(s i)}$.
- Reminder:
- First, we apply the algorithm f to the measurement results $\widetilde{x}_{i}\left(t_{i j}\right)$ and get the estimate \widetilde{y}.
- Then, for each sensor i, we simulate cosine terms and get the results $y^{(c i)}$.
- Third, for each sensor i, we simulate sine terms and get the results $y^{(s i)}$.

Home Page

Title Page
44

```
4
```

Page 14 of 14

Go Back

Full Screen

Close

