Towards a More Realistic Treatment of Uncertainty in Earth and Environmental Sciences: Beyond a Simplified Subdivision into Interval and Random Components

Christian Servin^{1,4}, Craig Tweedie^{2,4}, and Aaron Velasco^{3,4}

¹Computational Sciences Program ²Environmental Science and Engineering Program ³Department of Geological Sciences ⁴Cyber-ShARE Center University of Texas, El Paso, Texas 79968, USA christains@utep.edu, ctweedie@utep.edu, velasco@geo.utep.edu

1. Measurement Uncertainty: Reminder

- Usually, a meas. error $\Delta x \stackrel{\text{def}}{=} \tilde{x} x$ is subdivided into random and systematic components $\Delta x = \Delta_s x + \Delta_r x$:
 - the systematic error component $\Delta_s x$ is usually defined as the expected value $\Delta_s x = E[\Delta x]$, while
 - the random error component is usually defined as the difference $\Delta_r x \stackrel{\text{def}}{=} \Delta x - \Delta_s x$.
- The random errors $\Delta_r x$ corresponding to different measurements are usually assumed to be independent.
- For $\Delta_s x$, we only know the upper bound Δ_s s.t. $|\Delta_s x| \leq \Delta_s$, i.e., that $\Delta_s x$ is in the *interval* $[-\Delta_s, \Delta_s]$.
- Because of this fact, *interval computations* are used for processing the systematic errors.
- $\Delta_r x$ is usually characterized by the corr. probability distribution (usually Gaussian, with known σ).

Measurement					
Problem					
Aı	Analysis of the Problem				
De	efinitions a	nd the			
Pr	oof of the	Main Result			
Pr	ractical Co	nclusions			
Н	ow to Prop	oagate			
Propagating Periodic					
Pr	ropagating	Periodic			
	Home Page				
	Title	Page			
	••	••			
	•				
	Page 2 of 14				
	Go Back				
	Full Screen				
	Close				
	Quit				

2. Problem

- Often, the differences $\Delta_r x = \Delta x \Delta_s x$ corr. to nearby times are strongly correlated.
- For example, meteorological sensors may have daytime or nighttime biases, or winter and summer biases.
- To capture this correlation, environmental scientists proposed a semi-heuristic 3-component model of Δx .
- In this model, the difference $\Delta x \Delta_s x$ is represented as a combination of:
 - a "truly random" error $\Delta_t x$ (which is independent from one measurement to another), and
 - a new "periodic" component $\Delta_p x$.
- We provide a theoretical explanation for this heuristic three-component model.

Measurement					
Pr	roblem				
Ar	Analysis of the Problem				
De	efinitions a	nd the			
Pr	oof of the	Main Resu	ılt		
Pr	ractical Co	nclusions			
На	How to Propagate				
Propagating Periodic					
Pr	ropagating	Periodic			
	Home Page				
	Title Page				
	44	••			
	•	•			
	Page 3 OF 14				
	Go Back				
	Full Screen				
	Close				
	Quit				

3. Analysis of the Problem

- We want to represent measurement error $\Delta x(t)$ as a linear combination of several components.
- We consider the most detailed level of granularity, w/each component determined by finitely many parameters c_i .
- Each component is thus described by a finite-dimensional linear space

$$L = \{ c_1 \cdot x_1(t) + \ldots + c_n \cdot x_n(t) : c_1, \ldots, c_n \in \mathbb{R} \}.$$

- In most applications, signals are smooth and bounded, so we assume that $x_i(t)$ is smooth and bounded.
- Finally, for a long series of observations, we can choose a starting point arbitrarily: $t \rightarrow t + t_0$.
- It is reasonable to require that this change keeps us within the same component, i.e.,

$$x(t) \in L \Rightarrow x(t+t_0) \in L.$$

4. Definitions and the Main Result

١

- A function x(t) of one variable is called *bounded* if $\exists M \, \forall t \, (|x(t)| \leq M).$
- We say that a class F of functions of one variable is *shift-invariant* if

$$\forall x(t) (x(t) \in F \Rightarrow \forall t_0 (x(t+t_0) \in F)).$$

• By an *error component* we mean a shift-invariant finitedimensional linear space of functions

$$L = \{c_1 \cdot x_1(t) + \ldots + c_n \cdot x_n(t) : c_i \in \mathbb{R}\}.$$

• **Theorem:** Every error component is a linear combination of the functions

$$x(t) = \sin(\omega \cdot t) \text{ and } x(t) = \cos(\omega \cdot t).$$

5. Proof of the Main Result

• Shift-invariance means that, for some $c_i(t_0)$, we have

 $x_i(t+t_0) = c_{i1}(t_0) \cdot x_1(t) + \ldots + c_{in}(t_0) \cdot x_n(t).$

- For *n* different values $t = t_1, \ldots, t = t_n$, we get a system of *n* linear equations with *n* unknowns $c_{ij}(t_0)$.
- The Cramer's rule solution to linear equations is a smooth function of all the coeff. & right-hand sides.
- Since all the right-hand sides $x_i(t_j + t_0)$ and coefficients $x_i(t_j)$ are smooth, $c_{ij}(t_0)$ are also smooth.
- Differentiating w.r.t. t_0 and taking $t_0 = 0$, for $c_{ij} \stackrel{\text{def}}{=} \dot{c}_{ij}(0)$, we get

$$\dot{x}_i(t) = c_{i1} \cdot x_1(t) + \ldots + c_{in} \cdot x_n(t).$$

Measurement				
Pr	oblem			
Ar	alysis of t	he Problem		
De	efinitions a	nd the		
Pr	oof of the	Main Resul	t	
Pr	actical Co	nclusions		
Ha	ow to Prop	oagate		
Propagating Periodic				
Pr	opagating	Periodic		
	Home Page			
	Title Page			
	44	••		
	•			
	Page 6 of 14			
	Go Back			
	Full Screen			
	Full S	Screen		
	Full S Clo	ose		

6. Proof (cont-d)

- Reminder: $\dot{x}_i(t) = c_{i1} \cdot x_1(t) + \ldots + c_{in} \cdot x_n(t).$
- A general solution of such system of equations is a linear combination of functions

$$t^k \cdot \exp(\lambda \cdot t), \ w/k \in \mathbb{N}, k \ge 0, \lambda = a + i \cdot \omega \in \mathbb{C}.$$

• Here,

$$\exp(\lambda \cdot t) = \exp(a \cdot t) \cdot \cos(\omega \cdot t) + \mathbf{i} \cdot \exp(a \cdot t) \cdot \sin(\omega \cdot t).$$

- When $a \neq 0$, we get unbounded functions for $t \to \infty$ or $t \to -\infty$.
- So, a = 0.
- For k > 0, we get unbounded t^k ; so, k = 0.
- Thus, we indeed have a linear combination of sinusoids.

7. Practical Conclusions

- Let f be the measurements frequency (how many measurements we perform per unit time).
- When $\omega \ll f$, the values $\cos(\omega \cdot t)$ and $\sin(\omega \cdot t)$ practically do not change with time.
- Indeed, the change period is much larger than the usual observation period.
- Thus, we can identify such low-frequency components with *systematic* error component.
- When $\omega \gg f$, the phases of the values $\cos(\omega \cdot t_i)$ and $\cos(\omega \cdot t_{i+1})$ differ a lot.
- For all practical purposes, the resulting values of cosine or sine functions are independent.
- Thus, high-frequency components can be identified with *random* error component.

Measurement				
Problem				
Analysis of the Problem				
Definitions and the				
Proof of the Main Resul	t			
Practical Conclusions				
How to Propagate				
Propagating Periodic				
Propagating Periodic				
Home Page				
Title Page				
44 >>				
Page 8 of 14				
Go Back				
Full Screen				
Close				
Quit				

8. Practical Conclusions (cont-d)

- Result: every error component is a linear combination of $\cos(\omega \cdot t)$ and $\sin(\omega \cdot t)$.
- Notation: let f be the measurements frequency (how many measurements we perform per unit time).

• Reminder:

- we can identify low-frequency components ($\omega \ll f$) with *systematic* error component;
- we can identify high-frequency ones $(\omega \gg f)$ with random error component.
- Easy to see: all other error components $\cos(\omega \cdot t)$ and $\sin(\omega \cdot t)$ are periodic.
- *Conclusion:* we have indeed justified to the semi-empirical 3-component model of measurement error.

- 9. How to Propagate Uncertainty in the Three-Component Model
 - We are interested in the quantity

 $y = f(x_1(t_{11}), x_1(t_{12}), \dots, x_2(t_{21}), x_2(t_{22}), \dots, x_n(t_{n1}), x_n(t_{n2}), \dots$

- Instead of the actual values $x_i(t_{ij})$, we only know the measurement results $\tilde{x}_i(t_{ij}) = x_i(t_{ij}) + \Delta x_i(t_{ij})$.
- Measurement errors are usually small, so terms quadratic (and higher) in $\Delta x_i(t_{ij})$ can be safely ignored.
- For example, if the measurement error is 10%, its square is 1% which is much much smaller than 10%.
- If the measurement error is 1%, its square is 0.01% which is much much smaller than 1%.
- Thus, we can safely linearize the dependence of Δy on $\Delta x_i(t_{ij})$.

10. How to Propagate Uncertainty (cont-d)

• Reminder: we can safely linearize the dependence of Δy on $\Delta x_i(t_{ij})$, so

$$\Delta y = \sum_{i} \sum_{j} C_{ij} \cdot \Delta x_i(t_{ij}), \text{ with } C_{ij} \stackrel{\text{def}}{=} \frac{\partial y}{\partial x_i(t_{ij})}.$$

- In general, $\Delta x_i(t_{ij}) = s_i + r_{ij} + \sum_{\ell} A_{\ell i} \cdot \cos(\omega_{\ell} \cdot t_{ij} + \varphi_{\ell i}).$
- Due to linearity, we have $\Delta y = \Delta y_s + \Delta y_r + \sum_{\ell} \Delta y_{p\ell}$, where

$$\Delta y_s = \sum_i \sum_j C_{ij} \cdot s_i; \quad \Delta y_r = \sum_i \sum_j C_{ij} \cdot r_{ij};$$
$$\Delta y_{p\ell} = \sum_i \sum_j C_{ij} \cdot A_{\ell i} \cdot \cos(\omega_\ell \cdot t_{ij} + \varphi_{\ell i}).$$

- We know: how to compute Δy_s and Δy_r .
- What is needed: propagation of the periodic component.

11. Propagating Periodic Component: Analysis

• *Reminder:* for each component, we have

$$\Delta y_{p\ell} = \sum_{i} \sum_{j} C_{ij} \cdot A_{\ell i} \cdot \cos(\omega_{\ell} \cdot t_{ij} + \varphi_{\ell i}).$$

- It is reasonable to assume that different phrases $\varphi_{\ell i}$ are independent (and uniformly distributed).
- Thus, by the Central Limit Theorem, the distribution of $\Delta y_{p\ell}$ is close to normal, with 0 mean.

• The variance of
$$\Delta y_{p\ell}$$
 is $\frac{1}{2} \cdot \sum_{i} A_{\ell i}^2 \cdot (K_{ci}^2 + K_{si}^2).$

- Each amplitude $A_{\ell i}$ can take any value from 0 to the known bound $P_{\ell i}$.
- Thus, the variance is bounded by $\frac{1}{2} \cdot \sum_{i} P_{\ell i}^2 \cdot (K_{ci}^2 + K_{si}^2)$.
- So, we arrive at the following algorithm.

- 12. Propagating Periodic-Induced Component: Algorithm
 - First, we apply the algorithm f to the measurement results $\tilde{x}_i(t_{ij})$ and get the estimate \tilde{y} .
 - Then, we select a small value δ and for each sensor i, we do the following:
 - take $x_i^{(ci)}(t_{ij}) = \widetilde{x}_i(t_{ij}) + \delta \cdot \cos(\omega_\ell \cdot t_{ij})$ for all moments j;
 - for other sensors $i' \neq i$, take $x_{i'}^{(ci)}(t_{i'j}) = \widetilde{x}_i(t_{i'j});$
 - substitute the resulting values $x_{i'}^{(ci)}(t_{i'j})$ into the data processing algorithm f and get the result $y^{(ci)}$;
 - then, take $x_i^{(si)}(t_{ij}) = \tilde{x}_i(t_{ij}) + \delta \cdot \sin(\omega_\ell \cdot t_{ij})$ for all moments j;
 - for all other $i' \neq i$, take $x_{i'}^{(si)}(t_{i'j}) = \widetilde{x}_i(t_{i'j});$
 - substitute the resulting values $x_{i'}^{(si)}(t_{i'j})$ into the data processing algorithm f and get the result $y^{(si)}$.

Measurement					
Pr	oblem				
Ar	nalysis of t	he Problen	n		
De	efinitions a	and the			
Pr	oof of the	Main Rest	ılt		
Pr	actical Co	nclusions			
Ha	ow to Prop	pagate			
Pr	opagating	Periodic			
Pr	opagating	Periodic			
	Ноте	e Page			
	Title Page				
	44	••			
	•	•			
	Page 13 of 14				
	Go Back				
	Full Screen				
	Close				
	Quit				

13. Algorithm (cont-d)

- Reminder:
 - First, we apply the algorithm f to the measurement results $\widetilde{x}_i(t_{ij})$ and get the estimate \widetilde{y} .
 - Then, for each sensor i, we simulate cosine terms and get the results $y^{(ci)}$.
 - Third, for each sensor i, we simulate sine terms and get the results $y^{(si)}$.
- Finally, we estimate the desired bound $\sigma_{p\ell}$ on the standard deviation of $\Delta y_{p\ell}$ as

$$\sigma_{p\ell} = \sqrt{\frac{1}{2} \cdot \sum_{i} P_{\ell i}^2 \cdot \left(\left(\frac{y^{(ci)} - \widetilde{y}}{\delta} \right)^2 + \left(\frac{y^{(si)} - \widetilde{y}}{\delta} \right)^2 \right)}.$$

Measurement... Problem Analysis of the Problem Definitions and the... Proof of the Main Result Practical Conclusions How to Propagate... Propagating Periodic....

