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1.

Measurement Uncertainty: Reminder

e Usually, a meas. error Ax ©' 7 _ 2 is subdivided into
random and systematic components Ax = Az + A,x:

— the systematic error component A x is usually de-
fined as the expected value Agz = E[Az], while

— the random error component is usually defined as
the difference A,z ©fAx — Agx.

e The random errors A,x corresponding to different mea-
surements are usually assumed to be independent.

e For A x, we only know the upper bound A; s.t.
|Agx| < Ag, ie., that Agz is in the interval [—Ag, Ay

e Because of this fact, interval computations are used for
processing the systematic errors.

e A,z is usually characterized by the corr. probability
distribution (usually Gaussian, with known o).
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2.

Problem

e Often, the differences A,z = Ax — Ayx corr. to nearby
times are strongly correlated.

e For example, meteorological sensors may have daytime
or nighttime biases, or winter and summer biases.

e To capture this correlation, environmental scientists
proposed a semi-heuristic 3-component model of Ax.

e In this model, the difference Ax — A x is represented
as a combination of:

— a “truly random” error A;x (which is independent
from one measurement to another), and
—anew “periodic” component A,z.

e We provide a theoretical explanation for this heuristic
three-component model.
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3.

Analysis of the Problem

Analysis of the Problem

e We want to represent measurement error Az(t) as a
linear combination of several components.

e We consider the most detailed level of granularity, w/each
component determined by finitely many parameters c;.

e Fach component is thus described by a finite-dimensional
linear space

L=A{ci-x1(t)+...4ch-xp(t) i c1,...,c0 € R}

e In most applications, signals are smooth and bounded,
so we assume that x;(t) is smooth and bounded.

e Finally, for a long series of observations, we can choose
a starting point arbitrarily: ¢ — ¢ + .

e It is reasonable to require that this change keeps us
within the same component, i.e.,

z(t) € L= x(t+1ty) € L.




4. Definitions and the Main Result

e A function x(t) of one variable is called bounded if DTS B8 0
AMVt (|x(t)] < M).

e We say that a class F' of functions of one variable is
shift-invariant if

Va(t) (z(t) € F = Vo (2(t + t) € F)).

e By an error component we mean a shift-invariant finite-
dimensional linear space of functions

L={ci-x1(t)+ ... +cn-xp(t) : ¢; € R}

e Theorem: Fwvery error component is a linear combi-
nation of the functions

z(t) =sin(w - t) and x(t) = cos(w - t).




5. Proof of the Main Result

e Shift-invariance means that, for some ¢;(ty), we have

Proof of the Main Result

IIZi(t + to) = Cil(t[)) . xl(t) + ...+ Cm(to) . xn(t)

e For n different values t = ¢4, ..., t = t,, we get a
system of n linear equations with n unknowns ¢;;(%).

e The Cramer’s rule solution to linear equations is a
smooth function of all the coeff. & right-hand sides.

e Since all the right-hand sides z;(t;+1%;) and coefficients
z;(t;) are smooth, ¢;;(ty) are also smooth.

e Differentiating w.r.t. ¢y and taking ¢y = 0, for ¢;; dof
¢;;(0), we get

xl(t) = Cj1 Zl’,’l(t) + ...+ Cin - xn(t)




6.

Proof (cont-d)

o Reminder: x;(t) = ci1 - x1(t) + ... + Cin - Tp(1).

e A general solution of such system of equations is a lin-
ear combination of functions

t" . exp(A-t), wkeNE>0 A=a+i-weC.
e Here,
exp(A-t) =exp(a-t)-cos(w-t)+i-exp(a-t)-sin(w-t).

e When a # 0, we get unbounded functions for t — oo
or t — —00.

e So, a = 0.

e For k > 0, we get unbounded t*; so, k = 0.

e Thus, we indeed have a linear combination of sinusoids.

Practical Conclusions




7. Practical Conclusions
e Let f be the measurements frequency (how many mea-
surements we perform per unit time).

e When w < f, the values cos(w - t) and sin(w - t) prac-
tically do not change with time.

How to Propagate. ..

e Indeed, the change period is much larger than the usual

observation period.  Homepage |

e Thus, we can identify such low-frequency components
with systematic error component. ’7 ,7

e When w > f, the phases of the values cos(w - t;) and
cos(w - t;11) differ a lot.

e For all practical purposes, the resulting values of cosine
or sine functions are independent.

e Thus, high-frequency components can be identified with
random error component.




8. Practical Conclusions (cont-d)

e Result: every error component is a linear combination
of cos(w - t) and sin(w - t).

e Notation: let f be the measurements frequency (how
many measurements we perform per unit time).

Propagating Periodic. . .

e Reminder:

— we can identify low-frequency components (w < f)
with systematic error component;

— we can identify high-frequency ones (w > f) with
random error component.

e Fasy to see: all other error components cos(w - t) and
sin(w - t) are periodic.

e Conclusion: we have indeed justified to the semi-empirical
3-component model of measurement error.




9. How to Propagate Uncertainty in the Three-
Component Model

e We are interested in the quantity

y = f(x1(t1n), z1(t12), . . ., x2(ta1), x2(ta2), . . ., T (tn1), Tn(tn2), - - .

e Instead of the actual values z;(t;;), we only know the
measurement results T;(t;;) = x;(t;;) + Awx;(t;5).

e Measurement errors are usually small, so terms quadratic
(and higher) in Ax;(t;;) can be safely ignored.

e For example, if the measurement error is 10%, its square
is 1% which is much much smaller than 10%.

e If the measurement error is 1%, its square is 0.01%
which is much much smaller than 1%.

e Thus, we can safely linearize the dependence of Ay on
Axi (tij).

Propagating Periodic- . . .
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10. How to Propagate Uncertainty (cont-d)

e Reminder: we can safely linearize the dependence of
Ay on Aw;(t;;), so

_ def Oy
Ay = Z Z Cij - Axi(ty;), with Cy; = Owi(ti;)

i
e In general, Ax;(t;;) = si+rij+ >, Avi-cos(we-ti;+@ui).

e Due to linearity, we have Ay = Ay; + Ay, + >, Ay,
where

Ays =" Cij-sis Ayp=Y_> Cij-rijs
i A

Aypg = Z Z Cl'j <Ay - COS(CUg “lij + QO&').

i J

e We know: how to compute Ay, and Ay,.

e What is needed: propagation of the periodic compo-
nent.




11. Propagating Periodic Component: Analysis

e Reminder: for each component, we have
Aype = Z Z Cij - Api - cos(wy - tij + @ui).
]
e [t is reasonable to assume that different phrases ¢, are

independent (and uniformly distributed).

e Thus, by the Central Limit Theorem, the distribution
of Ay, is close to normal, with 0 mean.

e The variance of Ay, is - Z AZ (K% 4+ K2).

e Each amplitude Ay; can take any value from 0 to the
known bound F;.

1
e Thus, the variance is bounded by 3 Z Pi-(KZ+K2).

e So, we arrive at the following algorithm.




12. Propagating Periodic-Induced Component: Al-
gorithm

e First, we apply the algorithm f to the measurement
results 7;(t;;) and get the estimate y.

e Then, we select a small value ¢ and for each sensor ¢,
we do the following:

— take xECi)(tij) = 7;(ti;) + 6 - cos(wy - t;;) for all mo-
ments 7;

— for other sensors i’ # i, take :UZ(,C 0 (tirj) = Zits));

— substitute the resulting values xg,d)(ti/j) into the
data processing algorithm f and get the result y(“);

— then, take azgm) (tij) = 2i(tij) + 6 - sin(wy - t;;) for all
moments j;

— for all other i’ # i, take mg,sl)(ti/j) = zi(ti/j);

— substitute the resulting values z;/ Z)(ti/j) into the
data processing algorithm f and get the result y*.




13. Algorithm (cont-d)

e Reminder:
— First, we apply the algorithm f to the measurement
results z;(¢;;) and get the estimate y.

— Then, for each sensor ¢, we simulate cosine terms
and get the results y().

— Third, for each sensor 7, we simulate sine terms and
get the results y©*9.

e Iinally, we estimate the desired bound o,y on the stan-
dard deviation of Ay, as

1 ) ylei) — 2 ylsi) — 2
Upgz §ZP€Z T -l- T .
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