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1. Measurement Uncertainty: Reminder

• Usually, a meas. error ∆x
def
= x̃ − x is subdivided into

random and systematic components ∆x = ∆sx+ ∆rx:

– the systematic error component ∆sx is usually de-
fined as the expected value ∆sx = E[∆x], while

– the random error component is usually defined as

the difference ∆rx
def
= ∆x−∆sx.

• The random errors ∆rx corresponding to different mea-
surements are usually assumed to be independent.

• For ∆sx, we only know the upper bound ∆s s.t.
|∆sx| ≤ ∆s, i.e., that ∆sx is in the interval [−∆s,∆s].

• Because of this fact, interval computations are used for
processing the systematic errors.

• ∆rx is usually characterized by the corr. probability
distribution (usually Gaussian, with known σ).
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2. Problem

• Often, the differences ∆rx = ∆x−∆sx corr. to nearby
times are strongly correlated.

• For example, meteorological sensors may have daytime
or nighttime biases, or winter and summer biases.

• To capture this correlation, environmental scientists
proposed a semi-heuristic 3-component model of ∆x.

• In this model, the difference ∆x −∆sx is represented
as a combination of:

– a “truly random” error ∆tx (which is independent
from one measurement to another), and

– a new “periodic” component ∆px.

• We provide a theoretical explanation for this heuristic
three-component model.



Measurement . . .

Problem

Analysis of the Problem

Definitions and the . . .

Proof of the Main Result

Practical Conclusions

How to Propagate . . .

Propagating Periodic . . .

Propagating Periodic- . . .

Home Page

Title Page

JJ II

J I

Page 4 of 14

Go Back

Full Screen

Close

Quit

3. Analysis of the Problem

• We want to represent measurement error ∆x(t) as a
linear combination of several components.

• We consider the most detailed level of granularity, w/each
component determined by finitely many parameters ci.

• Each component is thus described by a finite-dimensional
linear space

L = {c1 · x1(t) + . . .+ cn · xn(t) : c1, . . . , cn ∈ IR}.

• In most applications, signals are smooth and bounded,
so we assume that xi(t) is smooth and bounded.

• Finally, for a long series of observations, we can choose
a starting point arbitrarily: t→ t+ t0.

• It is reasonable to require that this change keeps us
within the same component, i.e.,

x(t) ∈ L⇒ x(t+ t0) ∈ L.
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4. Definitions and the Main Result

• A function x(t) of one variable is called bounded if

∃M ∀t (|x(t)| ≤M).

• We say that a class F of functions of one variable is
shift-invariant if

∀x(t) (x(t) ∈ F ⇒ ∀t0 (x(t+ t0) ∈ F )).

• By an error component we mean a shift-invariant finite-
dimensional linear space of functions

L = {c1 · x1(t) + . . .+ cn · xn(t) : ci ∈ IR}.

• Theorem: Every error component is a linear combi-
nation of the functions

x(t) = sin(ω · t) and x(t) = cos(ω · t).
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5. Proof of the Main Result

• Shift-invariance means that, for some ci(t0), we have

xi(t+ t0) = ci1(t0) · x1(t) + . . .+ cin(t0) · xn(t).

• For n different values t = t1, . . . , t = tn, we get a
system of n linear equations with n unknowns cij(t0).

• The Cramer’s rule solution to linear equations is a
smooth function of all the coeff. & right-hand sides.

• Since all the right-hand sides xi(tj +t0) and coefficients
xi(tj) are smooth, cij(t0) are also smooth.

• Differentiating w.r.t. t0 and taking t0 = 0, for cij
def
=

ċij(0), we get

ẋi(t) = ci1 · x1(t) + . . .+ cin · xn(t).
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6. Proof (cont-d)

• Reminder: ẋi(t) = ci1 · x1(t) + . . .+ cin · xn(t).

• A general solution of such system of equations is a lin-
ear combination of functions

tk · exp(λ · t), w/k ∈ N, k ≥ 0, λ = a+ i · ω ∈ C.

• Here,

exp(λ · t) = exp(a · t) · cos(ω · t) + i · exp(a · t) · sin(ω · t).

• When a 6= 0, we get unbounded functions for t → ∞
or t→ −∞.

• So, a = 0.

• For k > 0, we get unbounded tk; so, k = 0.

• Thus, we indeed have a linear combination of sinusoids.
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7. Practical Conclusions

• Let f be the measurements frequency (how many mea-
surements we perform per unit time).

• When ω � f , the values cos(ω · t) and sin(ω · t) prac-
tically do not change with time.

• Indeed, the change period is much larger than the usual
observation period.

• Thus, we can identify such low-frequency components
with systematic error component.

• When ω � f , the phases of the values cos(ω · ti) and
cos(ω · ti+1) differ a lot.

• For all practical purposes, the resulting values of cosine
or sine functions are independent.

• Thus, high-frequency components can be identified with
random error component.
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8. Practical Conclusions (cont-d)

• Result: every error component is a linear combination
of cos(ω · t) and sin(ω · t).

• Notation: let f be the measurements frequency (how
many measurements we perform per unit time).

• Reminder:

– we can identify low-frequency components (ω � f)
with systematic error component;

– we can identify high-frequency ones (ω � f) with
random error component.

• Easy to see: all other error components cos(ω · t) and
sin(ω · t) are periodic.

• Conclusion: we have indeed justified to the semi-empirical
3-component model of measurement error.
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9. How to Propagate Uncertainty in the Three-
Component Model

• We are interested in the quantity

y = f(x1(t11), x1(t12), . . . , x2(t21), x2(t22), . . . , xn(tn1), xn(tn2), . . .).

• Instead of the actual values xi(tij), we only know the
measurement results x̃i(tij) = xi(tij) + ∆xi(tij).

• Measurement errors are usually small, so terms quadratic
(and higher) in ∆xi(tij) can be safely ignored.

• For example, if the measurement error is 10%, its square
is 1% which is much much smaller than 10%.

• If the measurement error is 1%, its square is 0.01%
which is much much smaller than 1%.

• Thus, we can safely linearize the dependence of ∆y on
∆xi(tij).
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10. How to Propagate Uncertainty (cont-d)

• Reminder: we can safely linearize the dependence of
∆y on ∆xi(tij), so

∆y =
∑
i

∑
j

Cij ·∆xi(tij), with Cij
def
=

∂y

∂xi(tij)
.

• In general, ∆xi(tij) = si+rij +
∑

`A`i ·cos(ω` ·tij +ϕ`i).

• Due to linearity, we have ∆y = ∆ys + ∆yr +
∑

` ∆yp`,
where

∆ys =
∑
i

∑
j

Cij · si; ∆yr =
∑
i

∑
j

Cij · rij;

∆yp` =
∑
i

∑
j

Cij · A`i · cos(ω` · tij + ϕ`i).

• We know: how to compute ∆ys and ∆yr.

• What is needed: propagation of the periodic compo-
nent.
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11. Propagating Periodic Component: Analysis

• Reminder: for each component, we have

∆yp` =
∑
i

∑
j

Cij · A`i · cos(ω` · tij + ϕ`i).

• It is reasonable to assume that different phrases ϕ`i are
independent (and uniformly distributed).

• Thus, by the Central Limit Theorem, the distribution
of ∆yp` is close to normal, with 0 mean.

• The variance of ∆yp` is
1

2
·
∑
i

A2
`i · (K2

ci +K2
si).

• Each amplitude A`i can take any value from 0 to the
known bound P`i.

• Thus, the variance is bounded by
1

2
·
∑
i

P 2
`i ·(K2

ci+K
2
si).

• So, we arrive at the following algorithm.
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12. Propagating Periodic-Induced Component: Al-
gorithm

• First, we apply the algorithm f to the measurement
results x̃i(tij) and get the estimate ỹ.

• Then, we select a small value δ and for each sensor i,
we do the following:

– take x
(ci)
i (tij) = x̃i(tij) + δ · cos(ω` · tij) for all mo-

ments j;

– for other sensors i′ 6= i, take x
(ci)
i′ (ti′j) = x̃i(ti′j);

– substitute the resulting values x
(ci)
i′ (ti′j) into the

data processing algorithm f and get the result y(ci);

– then, take x
(si)
i (tij) = x̃i(tij) + δ · sin(ω` · tij) for all

moments j;

– for all other i′ 6= i, take x
(si)
i′ (ti′j) = x̃i(ti′j);

– substitute the resulting values x
(si)
i′ (ti′j) into the

data processing algorithm f and get the result y(si).
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13. Algorithm (cont-d)

• Reminder:

– First, we apply the algorithm f to the measurement
results x̃i(tij) and get the estimate ỹ.

– Then, for each sensor i, we simulate cosine terms
and get the results y(ci).

– Third, for each sensor i, we simulate sine terms and
get the results y(si).

• Finally, we estimate the desired bound σp` on the stan-
dard deviation of ∆yp` as

σp` =

√√√√1

2
·
∑
i

P 2
`i ·

((
y(ci) − ỹ

δ

)2

+

(
y(si) − ỹ

δ

)2
)
.
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