INTERVAL PSEUDO-INVERSE MATRICES: COMPUTATION AND APPLICATIONS

Pavel Saraev

Lipetsk State Technical University, Lipetsk, Russia
SCAN'2012, Novosibirsk, Sep. 23-28, 2012

INTRODUCTION

Given: $A \in \mathbb{R}^{m \times n}$.
Pseudo-inverse (Moore-Penrose generalized inverse) matrix $A^{+} \in \mathbb{R}^{n \times m}$:

$$
\begin{gathered}
A A^{+} A=A \\
A^{+} A A^{+}=A^{+} \\
\left(A A^{+}\right)^{T}=A A^{+} \\
\left(A^{+} A\right)^{T}=A^{+} A
\end{gathered}
$$

INTRODUCTION

Given: $A \in \mathbb{R}^{m \times n}$.
Pseudo-inverse (Moore-Penrose generalized inverse) matrix
$A^{+} \in \mathbb{R}^{n \times m}$:

$$
\begin{gathered}
A A^{+} A=A ; \\
A^{+} A A^{+}=A^{+} ; \\
\left(A A^{+}\right)^{T}=A A^{+} ; \\
\left(A^{+} A\right)^{T}=A^{+} A
\end{gathered}
$$

Advantages:

- always exists;
- unique;
- if nonsingular $A \in \mathbb{R}^{n \times n} A^{+}=A^{-1}$.

INTRODUCTION

Given: $A \in \mathbb{R}^{m \times n}$.
Pseudo-inverse (Moore-Penrose generalized inverse) matrix $A^{+} \in \mathbb{R}^{n \times m}$:

$$
\begin{gathered}
A A^{+} A=A ; \\
A^{+} A A^{+}=A^{+} ; \\
\left(A A^{+}\right)^{T}=A A^{+} ; \\
\left(A^{+} A\right)^{T}=A^{+} A
\end{gathered}
$$

Advantages:

- always exists;
- unique;
- if nonsingular $A \in \mathbb{R}^{n \times n} A^{+}=A^{-1}$.

Disadvantage:
instability

PROBLEM STATEMENT

Given: $[A] \in \mathbb{R}^{n \times n}$. Interval inverse matrix $[A]^{-1} \in \mathbb{R}^{n \times n}$ such that $[A]^{-1} \supset\left\{A^{-1}: A \in[A]\right\}$
围
G. Alefeld, J. Herzberger, Introduction to Interval Computations, Academic Press, New York, 1983.
國 J. Rohn, Inverse Interval Matrix, SIAM J. Num. Anal., V. 3 (1993), N 3, pp. 864-870.
T- T. Nirmala, D. Datta, H.S. Kushwaha, K. Ganesan, Inverse Interval Matrix: A New Approach, App. Math. Sci., V. 5 (2011), N 13, pp. 607-624.

PROBLEM STATEMENT

Given: $[A] \in \mathbb{R}^{n \times n}$. Interval inverse matrix $[A]^{-1} \in \mathbb{R}^{n \times n}$ such that $[A]^{-1} \supset\left\{A^{-1}: A \in[A]\right\}$
國 G. Alefeld, J. Herzberger, Introduction to Interval Computations, Academic Press, New York, 1983.
國 J. Rohn, Inverse Interval Matrix, SIAM J. Num. Anal., V. 3 (1993), N 3, pp. 864-870.
T- T. Nirmala, D. Datta, H.S. Kushwaha, K. Ganesan, Inverse Interval Matrix: A New Approach, App. Math. Sci., V. 5 (2011), N 13, pp. 607-624.

Definition

Given: $[A] \in \mathbb{R}^{m \times n}$. Interval pseudo-inverse matrix $[A]^{+} \in \mathbb{R}^{n \times m}$ is the minimal interval matrix such that $[A]^{+} \supset\left\{A^{+}: A \in[A]\right\}$
$[A]^{+}$is the extension of interval inverse matrix

Problem

Development of algorithm for computation of enclosure for $[A]^{+}$

PROPOSED ALGORITHM I

Interval Greville algorithm

Given

$[A] \in \mathbb{R}^{m \times n}$

Notation

[$\left.a_{k}\right]$ is k-th column of $[A], k=1, \ldots, n$.
$\left[A_{k}\right]$ are first k columns of $\left.[A]:\left[A_{k}\right]=\left(\begin{array}{llll}{\left[a_{1}\right]} & {\left[a_{2}\right]} & \ldots & {\left[a_{k}\right.}\end{array}\right]\right)$.
So,
$k=1:\left[A_{1}\right]=\left[a_{1}\right]$
$k=2, \ldots, n:\left[A_{k}\right]=\left(\left[A_{k-1}\right] \quad\left[a_{k}\right]\right)$.

PROPOSED ALGORITHM II

Step 1

Let $k=1$. Assume $\left[d_{1}\right]=\left\|\left[a_{1}\right]\right\|^{2}=\sum_{i=1}^{m}\left[a_{i 1}\right]^{2}$.

$$
\left[A_{1}\right]^{+}= \begin{cases}{[0],} & \text { if } \overline{\left[d_{1}\right]}=0, \\ \frac{\left[a_{1}\right]^{T}}{\left[d_{1}\right]}, & \text { if }\left[\underline{\left[d_{1}\right]}>0,\right. \\ {[0] \cup \frac{\left[a_{1}\right]^{T}}{\left[d_{1}\right]},} & \text { else, }\end{cases}
$$

where $[0] \in \mathbb{R}^{m}$ is the null interval vector, \cup is the interval hull of union of interval vectors.

PROPOSED ALGORITHM III

Steps $2, \ldots, n$

$$
\left[A_{k}\right]^{+}=\left[\begin{array}{c}
{\left[A_{k-1}\right]^{+}\left(I-\left[a_{k}\right]\left[f_{k}\right]\right)} \\
{\left[f_{k}\right]}
\end{array}\right],
$$

where l is the unitary matrix of the order m.
Let

$$
\begin{aligned}
& {\left[c_{k}\right]=\left(I-\left[A_{k-1}\right]\left[A_{k-1}\right]^{+}\right)\left[a_{k}\right], \quad\left[d_{k}\right]=\left\|c_{k}\right\|^{2},} \\
& {\left[f_{k}\right]= \begin{cases}\frac{\left[c_{k}\right]^{T}}{\left[d_{k}\right]}, & \text { if }\left[d_{k}\right]>0, \\
\frac{\left[a_{k}\right]^{\top}\left(\left[A_{k-1}\right]^{+}\right)^{T}\left[A_{k-1}\right]^{+}}{1+\left\|\left[A_{k-1}\right]^{+}\left[a_{k}\right]\right\|^{2}}, & \text { if } \overline{\left[d_{k}\right]}=0, \\
\frac{\left[c_{k}\right]^{T}}{\left[d_{k}\right]} \cup \frac{\left.\left[a_{k}\right]\right]^{T}\left(\left[A_{k-1}\right]^{+}\right)^{T}\left[A_{k-1}\right]^{+}}{1+\left\|\left[A_{k-1}\right]^{+}\left[a_{k}\right]\right\|^{2}}, & \text { else. }\end{cases} }
\end{aligned}
$$

DISCUSSION OF THE ALGORITHM

- Proposed algorithm is extension of traditional Greville algorithm (if $\left[d_{k}\right]=\overline{\left[d_{k}\right]}$).
- Pseudo-inversion is monotone operation: if $[A] \subset[B]$ then $[A]^{+} \subset$ $[B]^{+}$.
- It can be used union of finite number of interval matrices if software has this feature.
- Algorithm can obtain large overestimations (can contain infinite bounds) in some cases.
- Result can be interval matrix even for real matrix A.

DISCUSSION OF THE ALGORITHM

- Proposed algorithm is extension of traditional Greville algorithm (if $\left.\left[d_{k}\right]=\overline{\left[d_{k}\right]}\right)$.
- Pseudo-inversion is monotone operation: if $[A] \subset[B]$ then $[A]^{+} \subset$ $[B]^{+}$.
- It can be used union of finite number of interval matrices if software has this feature.
- Algorithm can obtain large overestimations (can contain infinite bounds) in some cases.
- Result can be interval matrix even for real matrix A.

Accuracy criterion:

$$
\begin{gathered}
{[t]=\left\|[A][A]^{+}[A]-[A]\right\|+\left\|[A]^{+}[A][A]^{+}-[A]^{+}\right\|+} \\
+\left\|\left([A][A]^{+}\right)^{T}-[A][A]^{+}\right\|+\left\|\left([A]^{+}[A]\right)^{T}-[A]^{+}[A]\right\| .
\end{gathered}
$$

Also can be used:

$$
\operatorname{wid}\left([A]^{+}\right)
$$

EXAMPLES I

Ex. 1. Real non-zero number

$$
\begin{gathered}
{[A]=-2.5 \in \mathbb{R} ;} \\
{[A]^{+}=[-0.4 ;-0.4]}
\end{gathered}
$$

Ex. 2. Real zero number

$$
\begin{aligned}
& {[A]=0 \in \mathbb{R} ;} \\
& {[A]^{+}=[0 ; 0]}
\end{aligned}
$$

EXAMPLES II

Ex. 3. Interval number non-containing zero

$$
\begin{aligned}
& {[A]=[1 ; 2] \in \mathbb{R} ;} \\
& {[A]^{+}=[0,25 ; 2],}
\end{aligned}
$$

but true result is $[A]^{+}=[0,5 ; 1]$
Ex. 4. Interval number containing zero

$$
\begin{gathered}
{[A]=[-1 ; 4] \in \mathbb{R} ;} \\
{[A]^{+}=[\infty ;+\infty],}
\end{gathered}
$$

which is interval hull of union $[-\infty ; 1] \cup 0 \cup[0,25 ;+\infty]$

EXAMPLES III

Ex. 5. Real matrix

$$
[A]=\left(\begin{array}{ll}
1 & 3 \\
0 & 0 \\
1 & 3
\end{array}\right) \in \mathbb{R}^{3 \times 2}
$$

$$
\begin{gathered}
{[A]^{+}=\left(\begin{array}{ccc}
{[0.049 . .9 ; 0.050 . .01]} & {[0 ; 0]} & {[0.049 . .9 ; 0.050 . .01]} \\
{[0.15 ; 0.15]} & {[0 ; 0]} & {[0.15 ; 0.15]}
\end{array}\right),} \\
{[t] \approx\left[0 ; 6.334 \cdot 10^{-30}\right],} \\
\operatorname{wid}\left([A]^{+}\right) \approx 1.43 \cdot 10^{-16}, \\
{[A]^{+} \supset A^{+}=\left(\begin{array}{lll}
0.05 & 0 & 0.05 \\
0.15 & 0 & 0.15
\end{array}\right)}
\end{gathered}
$$

EXAMPLES IV

Ex. 6. Interval matrix

$$
\begin{gathered}
{[A]=\left(\begin{array}{cc}
{[1 ; 3]} & {[-1 ; 0]} \\
{[2 ; 3]} & {[2 ; 3]} \\
{[2 ; 3]} & {[2 ; 3]}
\end{array}\right) \in \mathbb{R}^{2 \times 3} ;} \\
\operatorname{wid}([A])=2 \\
{[A]^{+} \approx\left(\begin{array}{cc}
{[-7.45 ; 12.61]} & {[-3.04 ; 1.74]} \\
{[-9.47 ; 1.35]} & {[0.00 ; 2.58]} \\
{[-6.79 ; 12.50]} & {[-3.04 ; 1.55]}
\end{array}\right),} \\
{[t] \approx[0 ; 4736161],} \\
\operatorname{wid}\left([A]^{+}\right) \approx 20.06,
\end{gathered}
$$

EXAMPLES V

Ex. 7. "Bad" real matrix

R. H. Minakuchi, H. Kai, K. Shirayanagi, M-T. Noday, Algorithm stabilization techniques and their application to symbolic computation of generalized inverses, Electronic Proc. of the IMACS Conference on Applications of Computer Algebra (IMACS-ACA'97), 1997.http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.137.8604

$$
[A]=\left(\begin{array}{ccc}
3 & \frac{211}{3} & \frac{15}{7} \\
3 & 70.3333 & 2.14286
\end{array}\right) \in \mathbb{R}^{2 \times 3}
$$

Specific of the matrix: $\frac{211}{3} \approx 70.3333, \frac{15}{7} \approx 2.14286$ For interval Greville algorithm applying: $\frac{211}{3} \subset$ [70.33..3; 70.33..4], $\frac{15}{7} \subset$ [2.142857..142857; 2.142857..142858]

$$
\begin{aligned}
& {[A]^{+} \approx\left(\begin{array}{cc}
{[-\infty ;+\infty]} & {[-\infty ;+\infty]} \\
{[-\infty ;+\infty]} & {[-\infty ;+\infty]} \\
{[-\infty ;+\infty]} & {[-\infty ;+\infty]}
\end{array}\right),} \\
& {[t] \approx[0 ;+\infty], \quad \text { wid }\left([A]^{+}\right)=+\infty}
\end{aligned}
$$

POSSIBLE APPLICATIONS I

1. Real case: unstable operation detection

$$
A \in \mathbb{R}^{m \times n} \rightarrow\left[A_{\varepsilon}\right] \in \mathbb{R}^{m \times n}
$$

where $\left[A_{\varepsilon}\right]$ is epsilon-extension of A
$\overline{[t]}$ or wid $\left(\left[A_{\varepsilon}\right]^{+}\right)$is large - operation is unstable
$[t]$ or wid $\left(\left[A_{\varepsilon}\right]^{+}\right)$is small $-A^{+} \approx \operatorname{mid}\left(\left[A_{\varepsilon}\right]^{+}\right)$

POSSIBLE APPLICATIONS II

2. Linear least squares problem: analytic solution

Given: $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$

$$
A x=b \rightarrow\|A x-b\|_{2}^{2} \rightarrow \min
$$

with respect to $x \in \mathbb{R}^{n}$
Normal pseudo-solution (solution of linear LSP):

$$
x=A^{+} b
$$

Interval case $([A][x]=[b])$:

$$
[x]=[A]^{+}[b]
$$

POSSIBLE APPLICATIONS III

3. Guaranteed nonlinear least squares problem with separable variables

- G.H. Golub, V. Pereyra. The Differentiation of Pseudo-Inverses and Nonlinear Least Squares Problems Whose Variables Separate SIAM J. Num. Anal., 1973.- Vol. 10.- pp. 413-432

R-L. Blyumin, P.V. Saraev. Reduction of adjusting weights space dimension in feedforward artificial neural networks training. Proc. of IEEE Int. Conf. on Artificial Intelligence Syst.- 2002.- P. 242-247.
Let u and v are linear and nonlinear parameter vectors (for example, feedforward NN); y is known responses vector; $\Psi(v)$ is matrix of basis functions Linear-nonlinear equation:

$$
u=\Psi(v)^{+} y
$$

Interval pseudo-inverse can be used to optimize modified function:

$$
J(u, v)=\|\Psi(v) u-y\|_{2}^{2} \rightarrow \min \rightarrow \hat{J}(v)=\left\|\Psi(v) \Psi(v)^{+} y-y\right\|_{2}^{2} \rightarrow \min
$$

Interval case:

$$
\begin{gathered}
{[u]=[\Psi([v])]^{+} y} \\
\hat{J}([v])=\left\|\Psi([v]) \Psi([v])^{+} y-y\right\|_{2}^{2} \rightarrow \min
\end{gathered}
$$

CONCLUSION

Results

- Interval Greville algorithm for estimation of interval pseudo-inverse matrices is proposed and investigated
- Work of the algorithm is showed at numerical examples, some features of the algorithm are stated
- Possible applications of interval pseudo-inversion to detection of unstable operation and optimzation problems are showed

THANK YOU FOR ATTENTION!

Pavel Saraev, LSTU (psaraev@yandex.ru)

