Decision Making under Interval Uncertainty

From Utility to

Beyond Interval .

Multi-Agent.
Beyond Optimization

Even Further Beyond.

Acknowledgments
Home Page
Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA
vladik@utep.edu

```
    Page 1 of 55
```

http://www.cs.utep.edu/vladik

Full Screen

Close

Quit

1. Decision Making: General Need and Traditional

- To make a decision, we must:
- find out the user's preference, and
- help the user select an alternative which is the best - according to these preferences.
- Traditional approach is based on an assumption that for each two alternatives A^{\prime} and $A^{\prime \prime}$, a user can tell:
- whether the first alternative is better for him/her; we will denote this by $A^{\prime \prime}<A^{\prime}$;
- or the second alternative is better; we will denote this by $A^{\prime}<A^{\prime \prime}$;
- or the two given alternatives are of equal value to the user; we will denote this by $A^{\prime}=A^{\prime \prime}$.

From Utility to

Beyond Interval.
Multi-Agent.
Beyond Optimization
Even Further Beyond

Acknowledgments
Home Page

Title Page

- Under the above assumption, we can form a natural numerical scale for describing preferences.
- Let us select a very bad alternative A_{0} and a very good alternative A_{1}.
- Then, most other alternatives are better than A_{0} but worse than A_{1}.
- For every prob. $p \in[0,1]$, we can form a lottery $L(p)$ in which we get $A_{1} \mathrm{w} /$ prob. p and $A_{0} \mathrm{w} /$ prob. $1-p$.
- When $p=0$, this lottery simply coincides with the alternative $A_{0}: L(0)=A_{0}$.
- The larger the probability p of the positive outcome increases, the better the result:

Full Screen

$$
p^{\prime}<p^{\prime \prime} \text { implies } L\left(p^{\prime}\right)<L\left(p^{\prime \prime}\right)
$$

- Finally, for $p=1$, the lottery coincides with the alternative $A_{1}: L(1)=A_{1}$.
- Thus, we have a continuous scale of alternatives $L(p)$ that monotonically goes from $L(0)=A_{0}$ to $L(1)=A_{1}$.
- Due to monotonicity, when p increases, we first have $L(p)<A$, then we have $L(p)>A$.
- The threshold value is called the utility of the alternative A :

$$
u(A) \stackrel{\text { def }}{=} \sup \{p: L(p)<A\}=\inf \{p: L(p)>A\} .
$$

- Then, for every $\varepsilon>0$, we have

$$
L(u(A)-\varepsilon)<A<L(u(A)+\varepsilon) .
$$

- We will describe such (almost) equivalence by \equiv, i.e., we will write that $A \equiv L(u(A))$.

```
Close
```

- Initially: we know the values $\underline{u}=0$ and $\bar{u}=1$ such that $A \equiv L(u(A))$ for some $u(A) \in[\underline{u}, \bar{u}]$.
- What we do: we compute the midpoint $u_{\text {mid }}$ of the interval $[\underline{u}, \bar{u}]$ and compare A with $L\left(u_{\text {mid }}\right)$.
- Possibilities: $A \leq L\left(u_{\text {mid }}\right)$ and $L\left(u_{\text {mid }}\right) \leq A$.
- Case 1: if $A \leq L\left(u_{\text {mid }}\right)$, then $u(A) \leq u_{\text {mid }}$, so

$$
u \in\left[\underline{u}, u_{\text {mid }}\right] .
$$

- Case 2: if $L\left(u_{\text {mid }}\right) \leq A$, then $u_{\text {mid }} \leq u(A)$, so

$$
u \in\left[u_{\text {mid }}, \bar{u}\right] .
$$

- After each iteration, we decrease the width of the interval $[\underline{u}, \bar{u}]$ by half.
- After k iterations, we get an interval of width 2^{-k} which contains $u(A)$ - i.e., we get $u(A) \mathrm{w} /$ accuracy 2^{-k}.

5. How to Make a Decision Based on Utility Val-

- Suppose that we have found the utilities $u\left(A^{\prime}\right), u\left(A^{\prime \prime}\right)$, \ldots, of the alternatives $A^{\prime}, A^{\prime \prime}, \ldots$
- Which of these alternatives should we choose?
- By definition of utility, we have:
- $A \equiv L(u(A))$ for every alternative A, and
- $L\left(p^{\prime}\right)<L\left(p^{\prime \prime}\right)$ if and only if $p^{\prime}<p^{\prime \prime}$.
- We can thus conclude that A^{\prime} is preferable to $A^{\prime \prime}$ if and only if $u\left(A^{\prime}\right)>u\left(A^{\prime \prime}\right)$.
- In other words, we should always select an alternative with the largest possible value of utility.
- Interval techniques can help in finding the optimizing decision.

6. How to Estimate Utility of an Action

- For each action, we usually know possible outcomes S_{1}, \ldots, S_{n}.
- We can often estimate the prob. p_{1}, \ldots, p_{n} of these outcomes.
- By definition of utility, each situation S_{i} is equiv. to a lottery $L\left(u\left(S_{i}\right)\right)$ in which we get:
- A_{1} with probability $u\left(S_{i}\right)$ and
- A_{0} with the remaining probability $1-u\left(S_{i}\right)$.
- Thus, the action is equivalent to a complex lottery in which:

```
Page 7 of 55
```

- first, we select one of the situations S_{i} with probability $p_{i}: P\left(S_{i}\right)=p_{i}$;

Full Screen

- then, depending on S_{i}, we get A_{1} with probability $P\left(A_{1} \mid S_{i}\right)=u\left(S_{i}\right)$ and $A_{0} \mathrm{w} /$ probability $1-u\left(S_{i}\right)$.

[^0]
7. How to Estimate Utility of an Action (cont-d)

- Reminder:
- first, we select one of the situations S_{i} with probability $p_{i}: P\left(S_{i}\right)=p_{i}$;
- then, depending on S_{i}, we get A_{1} with probability $P\left(A_{1} \mid S_{i}\right)=u\left(S_{i}\right)$ and $A_{0} \mathrm{w} /$ probability $1-u\left(S_{i}\right)$.
- The prob. of getting A_{1} in this complex lottery is:

$$
P\left(A_{1}\right)=\sum_{i=1}^{n} P\left(A_{1} \mid S_{i}\right) \cdot P\left(S_{i}\right)=\sum_{i=1}^{n} u\left(S_{i}\right) \cdot p_{i}
$$

- In the complex lottery, we get:
- A_{1} with prob. $u=\sum_{i=1}^{n} p_{i} \cdot u\left(S_{i}\right)$, and
- $A_{0} \mathrm{w} /$ prob. $1-u$.

Go Back

Full Screen

Close

- The above definition of utility u depends on A_{0}, A_{1}.
- What if we use different alternatives A_{0}^{\prime} and A_{1}^{\prime} ?
- Every A is equivalent to a lottery $L(u(A))$ in which we get $A_{1} \mathrm{w} / \operatorname{prob} . u(A)$ and $A_{0} \mathrm{w} /$ prob. $1-u(A)$.
- For simplicity, let us assume that $A_{0}^{\prime}<A_{0}<A_{1}<A_{1}^{\prime}$.

From Utility to

Beyond Interval.
Multi-Agent.
Beyond Optimization
Even Further Beyond.
Acknowledgments
Home Page

- Then, $A_{0} \equiv L^{\prime}\left(u^{\prime}\left(A_{0}\right)\right)$ and $A_{1} \equiv L^{\prime}\left(u^{\prime}\left(A_{1}\right)\right)$.
- So, A is equivalent to a complex lottery in which:

1) we select $A_{1} \mathrm{w} /$ prob. $u(A)$ and $A_{0} \mathrm{w} / \operatorname{prob} .1-u(A)$;
2) depending on A_{i}, we get $A_{1}^{\prime} \mathrm{w} /$ prob. $u^{\prime}\left(A_{i}\right)$ and A_{0}^{\prime} w/prob. $1-u^{\prime}\left(A_{i}\right)$.

Page 9 of 55

Go Back

- In this complex lottery, we get A_{1}^{\prime} with probability $u^{\prime}(A)=u(A) \cdot\left(u^{\prime}\left(A_{1}\right)-u^{\prime}\left(A_{0}\right)\right)+u^{\prime}\left(A_{0}\right)$.

Full Screen

- So, in general, utility is defined modulo an (increasing) linear transformation $u^{\prime}=a \cdot u+b$, with $a>0$.
- In practice, we often do not know the probabilities p_{i} of different outcomes.
- For each event E, a natural way to estimate its subjective probability is to fix a prize (e.g., $\$ 1$) and compare:
- the lottery ℓ_{E} in which we get the fixed prize if the event E occurs and 0 is it does not occur, with
- a lottery $\ell(p)$ in which we get the same amount with probability p.
- Here, similarly to the utility case, we get a value $p s(E)$ for which, for every $\varepsilon>0$:

From Utility to

Beyond Interval.
Multi-Agent.
Beyond Optimization
Even Further Beyond.
Acknowledgments
Home Page

Title Page

$$
\ell(p s(E)-\varepsilon)<\ell_{E}<\ell(p s(E)+\varepsilon)
$$

- Then, the utility of an action with possible outcomes

```
Go Back
```

Full Screen

Close
10. Beyond Traditional Decision Making: Towards

- Previously, we assumed that a user can always decide which of the two alternatives A^{\prime} and $A^{\prime \prime}$ is better:
- either $A^{\prime}<A^{\prime \prime}$,
- or $A^{\prime \prime}<A^{\prime}$,
- or $A^{\prime} \equiv A^{\prime \prime}$.
- In practice, a user is sometimes unable to meaningfully decide between the two alternatives; denoted $A^{\prime} \| A^{\prime \prime}$.
- In mathematical terms, this means that the preference relation:

```
Page 11 of 55
```

- is no longer a total (linear) order,
- it can be a partial order.

Go Back

Full Screen

Close

Quit

11. From Utility to Interval-Valued Utility

- Similarly to the traditional decision making approach:
- we select two alternatives $A_{0}<A_{1}$ and
- we compare each alternative A which is better than A_{0} and worse than A_{1} with lotteries $L(p)$.

$$
\underline{u}(A) \stackrel{\text { def }}{=} \sup \{p: L(p)<A\}<\bar{u}(A) \stackrel{\text { def }}{=} \inf \{p: L(p)>A\}
$$

Title Page

- For each alternative A, instead of a single value $u(A)$ of the utility, we now have an interval $[\underline{u}(A), \bar{u}(A)]$ s.t.:

$$
\begin{aligned}
& \text { - if } p<\underline{u}(A) \text {, then } L(p)<A \text {; } \\
& \text { - if } p>\bar{u}(A) \text {, then } A<L(p) \text {; and } \\
& \text { - if } \underline{u}(A)<p<\bar{u}(A) \text {, then } A \| L(p) .
\end{aligned}
$$

- We will call this interval the utility of the alternative A.

12. Interval-Valued Utilities and Interval-Valued

- To feasibly elicit the values $\underline{u}(A)$ and $\bar{u}(A)$, we:

1) starting $w /[\underline{u}, \bar{u}]=[0,1]$, bisect an interval s.t. $L(\underline{u})<A<L(\bar{u})$ until we find u_{0} s.t. $A \| L\left(u_{0}\right)$;
2) by bisecting an interval $\left[\underline{u}, u_{0}\right]$ for which $L(\underline{u})<A \| L\left(u_{0}\right)$, we find $\underline{u}(A)$;
3) by bisecting an interval $\left[u_{0}, \bar{u}\right]$ for which $L\left(u_{0}\right) \| A<L(\bar{u})$, we find $\bar{u}(A)$.

- Similarly, when we estimate the probability of an event E :
- we no longer get a single value $p s(E)$;
- we get an interval $[\underline{p s}(E), \overline{p s}(E)]$ of possible values of probability.

Go Back

Full Screen

Close

- Situation: for each possible decision d, we know the interval $[\underline{u}(d), \bar{u}(d)]$ of possible values of utility.
- Questions: which decision shall we select?
- Natural idea: select all decisions d_{0} that may be optimal, i.e., which are optimal for some function

$$
u(d) \in[\underline{u}(d), \bar{u}(d)] .
$$

From Utility to

Beyond Interval
Multi-Agent.
Beyond Optimization
Even Further Beyond

Acknowledgments
Home Page

Title Page

- Problem: checking all possible functions is not feasible.
- Solution: the above condition is equivalent to an easier-to-check one:

$$
\bar{u}\left(d_{0}\right) \geq \max _{d} \underline{u}(d)
$$

- Interval computations can help in describing the range of all such d_{0}.
- Remaining problem: in practice, we would like to select one decision; which one should be select?

14. Need for Definite Decision Making

- At first glance: if $A^{\prime} \| A^{\prime \prime}$, it does not matter whether we recommend alternative A^{\prime} or alternative $A^{\prime \prime}$.
- Let us show that this is not a good recommendation.
- E.g., let A be an alternative about which we know nothing, i.e., $[\underline{u}(A), \bar{u}(A)]=[0,1]$.
- In this case, A is indistinguishable both from a "good" lottery $L(0.999)$ and a "bad" lottery $L(0.001)$.
- Suppose that we recommend, to the user, that A is equivalent both to $L(0.999)$ and to $L(0.001)$.
- Then this user will feel comfortable:
- first, exchanging $L(0.999)$ with A, and
- then, exchanging A with $L(0.001)$.

From Utility to

Beyond Interval
Multi-Agent.
Beyond Optimization
Even Further Beyond.
Acknowledgments
Home Page

Title Page

Full Screen

Close

- The above argument does not depend on the fact that we assumed complete ignorance about A :
- every time we recommend that the alternative A is "equivalent" both to $L(p)$ and to $L\left(p^{\prime}\right)\left(p<p^{\prime}\right)$,
- we make the user vulnerable to a similar switch from a better alternative $L\left(p^{\prime}\right)$ to a worse one $L(p)$.
- Thus, there should be only a single value p for which A can be reasonably exchanged with $L(p)$.
- In precise terms:
- we start with the utility interval $[\underline{u}(A), \bar{u}(A)]$, and
- we need to select a single $u(A)$ for which it is reasonable to exchange A with a lottery $L(u)$.
- How can we find this value $u(A)$?

Beyond Interval.
Multi-Agent.
Beyond Optimization
Even Further Beyond

Acknowledgments
Home Page

Title Page

Full Screen

Close
16. Decisions under Interval Uncertainty: Hur-

- Reminder: we need to assign, to each interval $[\underline{u}, \bar{u}]$, a utility value $u(\underline{u}, \bar{u}) \in[\underline{u}, \bar{u}]$.
- History: this problem was first handled in 1951, by the future Nobelist Leonid Hurwicz.
- Notation: let us denote $\alpha_{H} \stackrel{\text { def }}{=} u(0,1)$.
- Reminder: utility is determined modulo a linear transformation $u^{\prime}=a \cdot u+b$.
- Reasonable to require: the equivalent utility does not change with re-scaling: for $a>0$ and b,

$$
u\left(a \cdot u^{-}+b, a \cdot u^{+}+b\right)=a \cdot u\left(u^{-}, u^{+}\right)+b .
$$

- For $u^{-}=0, u^{+}=1, a=\bar{u}-\underline{u}$, and $b=\underline{u}$, we get

```
Go Back
```

Full Screen

$$
u(\underline{u}, \bar{u})=\alpha_{H} \cdot(\bar{u}-\underline{u})+\underline{u}=\alpha_{H} \cdot \bar{u}+\left(1-\alpha_{H}\right) \cdot \underline{u} .
$$

- The expression $\alpha_{H} \cdot \bar{u}+\left(1-\alpha_{H}\right) \cdot \underline{u}$ is called optimismpessimism criterion, because:
- when $\alpha_{H}=1$, we make a decision based on the most optimistic possible values $u=\bar{u}$;
- when $\alpha_{H}=0$, we make a decision based on the most pessimistic possible values $u=\underline{u}$;
- for intermediate values $\alpha_{H} \in(0,1)$, we take a weighted average of the optimistic and pessimistic values.
- According to this criterion:
- if we have several alternatives A^{\prime}, \ldots, with intervalvalued utilities $\left[\underline{u}\left(A^{\prime}\right), \bar{u}\left(A^{\prime}\right)\right], \ldots$,
- we recommend an alternative A that maximizes

From Utility to

Beyond Interval.
Multi-Agent.
Beyond Optimization
Even Further Beyond
Acknowledgments
Home Page

Title Page

Full Screen

Close
18. Which Value α_{H} Should We Choose? An Ar-

- Let us take an event E about which we know nothing.
- For a lottery L^{+}in which we get A_{1} if E and A_{0} otherwise, the utility interval is $[0,1]$.
- Thus, the equiv. utility of L^{+}is $\alpha_{H} \cdot 1+\left(1-\alpha_{H}\right) \cdot 0=\alpha_{H}$.
- For a lottery L^{-}in which we get A_{0} if E and A_{1} otherwise, the utility is $[0,1]$, so equiv. utility is also α_{H}.

```
Title Page
``` 0.5 and \(A_{0}\) with probability 0.5 .
- Thus, \(L=L(0.5)\) and hence, \(u(L)=0.5\).

Full Screen

Close

\section*{19. Which Action Should We Choose?}
- Suppose that an action has \(n\) possible outcomes \(S_{1}, \ldots, S_{n}\), with utilities \(\left[\underline{u}\left(S_{i}\right), \bar{u}\left(S_{i}\right)\right]\), and probabilities \(\left[\underline{p}_{i}, \bar{p}_{i}\right]\).
- We know that each alternative is equivalent to a simple lottery with utility \(u_{i}=\alpha_{H} \cdot \bar{u}\left(S_{i}\right)+\left(1-\alpha_{H}\right) \cdot \underline{u}\left(S_{i}\right)\).
- We know that for each \(i\), the \(i\)-th event is equivalent to \(p_{i}=\alpha_{H} \cdot \bar{p}_{i}+\left(1-\alpha_{H}\right) \cdot \underline{p}_{i}\).
- Thus, this action is equivalent to a situation in which we get utility \(u_{i}\) with probability \(p_{i}\).
- The utility of such a situation is equal to \(\sum_{i=1}^{n} p_{i} \cdot u_{i}\).

From Utility to

Beyond Interval.
Multi-Agent.
Beyond Optimization
Even Further Beyond
Acknowledgments
Home Page

Title Page
44

4

Page 20 of 55

Go Back equivalent to

Full Screen

Close
20. Observation: the Resulting Decision Depends
- Let us consider a situation in which, with some prob. \(p\), we gain a utility \(u\), else we get 0 .
- The expected utility is \(p \cdot u+(1-p) \cdot 0=p \cdot u\).
- Suppose that we only know the intervals \([\underline{u}, \bar{u}]\) and \([\underline{p}, \bar{p}]\).

From Utility to

Beyond Interval.
Multi-Agent.
Beyond Optimization
Even Further Beyond
Acknowledgments
Home Page
- The equivalent utility \(u_{k}\) (\(k\) for \(k\) now) is
\[
u_{k}=\left(\alpha_{H} \cdot \bar{p}+\left(1-\alpha_{H}\right) \cdot \underline{p}\right) \cdot\left(\alpha_{H} \cdot \bar{u}+\left(1-\alpha_{H}\right) \cdot \underline{u}\right) .
\]
- If we only know that utility is from \([\underline{p} \cdot \underline{u}, \bar{p} \cdot \bar{u}]\), then:
\[
u_{d}=\alpha_{H} \cdot \bar{p} \cdot \bar{u}+\left(1-\alpha_{H}\right) \cdot \underline{p} \cdot \underline{u}(d \text { for don't know })
\]
- Here, additional knowledge decreases utility:
\[
u_{d}-u_{k}=\alpha_{H} \cdot\left(1-\alpha_{H}\right) \cdot(\bar{p}-\underline{p}) \cdot(\bar{u}-\underline{u})>0 .
\]

\section*{Full Screen}

Close by "For with much wisdom comes much sorrow"?)
21. Beyond Interval Uncertainty: Partial Info about
- Frequent situation:
- in addition to \(\mathbf{x}_{i}\),
- we may also have partial information about the probabilities of different values \(x_{i} \in \mathbf{x}_{i}\).
- An exact probability distribution can be described, e.g., by its cumulative distribution function
\[
F_{i}(z)=\operatorname{Prob}\left(x_{i} \leq z\right) .
\]
- A partial information means that instead of a single cdf, we have a class \(\mathcal{F}\) of possible cdfs.
- \(p\)-box (Scott Ferson):
- for every \(z\), we know an interval \(\mathbf{F}(z)=[\underline{F}(z), \bar{F}(z)]\);

Full Screen
- we consider all possible distributions for which, for all \(z\), we have \(F(z) \in \mathbf{F}(z)\).
22. Describing Partial Info about Probabilities:

\section*{Decision Making Viewpoint}
- Problem: there are many ways to represent a probability distribution.
- Idea: look for an objective.
- Objective: make decisions \(E_{x}[u(x, a)] \rightarrow\) max.
- Case 1: smooth \(u(x)\).
```

Title Page

```
- Analysis: we have \(u(x)=u\left(x_{0}\right)+\left(x-x_{0}\right) \cdot u^{\prime}\left(x_{0}\right)+\ldots\)
- Conclusion: we must know moments to estimate \(E[u]\).
- Case of uncertainty: interval bounds on moments.
- Case 2: threshold-type \(u(x)\) (e.g., regulations).
- Conclusion: we need \(\operatorname{cdf} F(x)=\operatorname{Prob}(\xi \leq x)\).
- Case of uncertainty: p-box \([\underline{F}(x), \bar{F}(x)]\).
- Problem: in some situations, it is difficult to elicit even interval-valued utilities.
- Case study: selecting a location for a meteorological tower.
- What we can use for decision making: in many such situations, there are reasonable symmetries.
- Good news: in such cases, we can often use symmetries to select an optimal decision.
- We show: how this works on the case study example.

The Notion of Utility
From Utility to
Beyond Interval.
Multi-Agent.
Beyond Optimization
Even Further Beyond.
Acknowledgments
Home Page

Title Page
```

Page 24 of 55

```

Go Back

Full Screen

Close

Quit
- Objective: select the best location of a sophisticated multi-sensor meteorological tower.
- Constraints: we have several criteria to satisfy.
- Example: the station should not be located too close to a road.
- Motivation: the gas flux generated by the cars do not influence our measurements of atmospheric fluxes.
- Formalization: the distance \(x_{1}\) to the road should be larger than a threshold \(t_{1}: x_{1}>t_{1}\), or \(y_{1} \stackrel{\text { def }}{=} x_{1}-t_{1}>0\).
- Example: the inclination \(x_{2}\) at the tower's location should be smaller than a threshold \(t_{2}\) : \(x_{2}<t_{2}\).
- Motivation: otherwise, the flux determined by this inclination and not by atmospheric processes.

\section*{From Utility to}

Beyond Interval
Multi-Agent.
Beyond Optimization
Even Further Beyond.
Acknowledgments
Home Page

Title Page

Full Screen

Close
- In general: we have several differences \(y_{1}, \ldots, y_{n}\) all of which have to be non-negative.
- For each of the differences \(y_{i}\), the larger its value, the better.
- Our problem is a typical setting for multi-criteria optimization.
- A most widely used approach to multi-criteria optimization is weighted average, where
- we assign weights \(w_{1}, \ldots, w_{n}>0\) to different criteria \(y_{i}\) and
- select an alternative for which the weighted average
\[
w_{1} \cdot y_{1}+\ldots+w_{n} \cdot y_{n}
\]
attains the largest possible value.

From Utility to

Beyond Interval.
Multi-Agent.
Beyond Optimization
Even Further Beyond.
Acknowledgments
Home Page

Title Page

Full Screen

Close

Quit
- In general: the weighted average approach often leads to reasonable solutions of the multi-criteria problem.
- In our problem: we have an additional requirement that all the values \(y_{i}\) must be positive. So:
- when selecting an alternative with the largest possible value of the weighted average,
- we must only compare solutions with \(y_{i}>0\).
- We will show: under the requirement \(y_{i}>0\), the weighted average approach is not fully satisfactory.
- Conclusion: we need to find a more adequate solution.

From Utility to

Beyond Interval
Multi-Agent.
Beyond Optimization
Even Further Beyond.
Acknowledgments
Home Page

Title Page

Full Screen

Close

Quit
27. Limitations of the Weighted Average Approach: Details
- The values \(y_{i}\) come from measurements, and measurements are never absolutely accurate.
- The results \(\widetilde{y}_{i}\) of the measurements are not exactly equal to the actual (unknown) values \(y_{i}\).
- If: for some alternative \(y=\left(y_{1}, \ldots, y_{n}\right)\)
- we measure the values \(y_{i}\) with higher and higher accuracy and,
- based on the measurement results \(\widetilde{y}_{i}\), we conclude that \(y\) is better than some other alternative \(y^{\prime}\).
```

Page 28 of 55

```
- Then: we expect that the actual alternative \(y\) is indeed better than \(y^{\prime}\) (or at least of the same quality).

Full Screen
- Otherwise, we will not be able to make any meaningful conclusions based on real-life measurements.
- Simplest case: two criteria \(y_{1}\) and \(y_{2}, \mathrm{w} /\) weights \(w_{i}>0\).
- If \(y_{1}, y_{2}, y_{1}^{\prime}, y_{2}^{\prime}>0\), and \(w_{1} \cdot y_{1}+w_{2} \cdot y_{2}>w_{1} \cdot y_{1}^{\prime}+w_{2} \cdot y_{2}^{\prime}\), then \(y=\left(y_{1}, y_{2}\right) \succ y^{\prime}=\left(y_{1}^{\prime}, y_{2}^{\prime}\right)\).
- If \(y_{1}>0, y_{2}>0\), and at least one of the values \(y_{1}^{\prime}\) and \(y_{2}^{\prime}\) is non-positive, then \(y=\left(y_{1}, y_{2}\right) \succ y^{\prime}=\left(y_{1}^{\prime}, y_{2}^{\prime}\right)\).
- Let us consider, for every \(\varepsilon>0\), the tuple
\(y(\varepsilon) \stackrel{\text { def }}{=}\left(\varepsilon, 1+w_{1} / w_{2}\right)\), and \(y^{\prime}=(1,1)\).
- In this case, for every \(\varepsilon>0\), we have
\(w_{1} \cdot y_{1}(\varepsilon)+w_{2} \cdot y_{2}(\varepsilon)=w_{1} \cdot \varepsilon+w_{2}+w_{2} \cdot \frac{w_{1}}{w_{2}}=w_{1} \cdot(1+\varepsilon)+w_{2}\)
and \(w_{1} \cdot y_{1}^{\prime}+w_{2} \cdot y_{2}^{\prime}=w_{1}+w_{2}\), hence \(y(\varepsilon) \succ y^{\prime}\).
- However, in the limit \(\varepsilon \rightarrow 0\), we have \(y(0)=\left(0,1+\frac{w_{1}}{w_{2}}\right)\),

Full Screen

Close with \(y(0)_{1}=0\) and thus, \(y(0) \prec y^{\prime}\).
- Each alternative is characterized by a tuple of \(n\) positive values \(y=\left(y_{1}, \ldots, y_{n}\right)\).
- Thus, the set of all alternatives is the set \(\left(R^{+}\right)^{n}\) of all the tuples of positive numbers.
- For each two alternatives \(y\) and \(y^{\prime}\), we want to tell whether
\(-y\) is better than \(y^{\prime}\) (we will denote it by \(y \succ y^{\prime}\) or \(y^{\prime} \prec y\)),
- or \(y^{\prime}\) is better than \(y\left(y^{\prime} \succ y\right)\),
- or \(y\) and \(y^{\prime}\) are equally good \(\left(y^{\prime} \sim y\right)\).
```

Page 30 of 55

```
- Natural requirement: if \(y\) is better than \(y^{\prime}\) and \(y^{\prime}\) is better than \(y^{\prime \prime}\), then \(y\) is better than \(y^{\prime \prime}\).
- The relation \(\succ\) must be transitive.
- Reminder: the relation \(\succ\) must be transitive.
- Similarly, the relation \(\sim\) must be transitive, symmetric, and reflexive \((y \sim y)\), i.e., be an equivalence relation.
- An alternative description: a transitive pre-ordering relation \(a \succeq b \Leftrightarrow(a \succ b \vee a \sim b)\) s.t. \(a \succeq b \vee b \succeq a\).

\section*{From Utility to}

\section*{Beyond Interval}

Multi-Agent.
Beyond Optimization
Even Further Beyond.
Acknowledgments
Home Page
- Then, \(a \sim b \Leftrightarrow(a \succeq b) \&(b \succeq a)\), and
\[
a \succ b \Leftrightarrow(a \succeq b) \&(b \nsucceq a)
\]
- Additional requirement:
- if each criterion is better,
- then the alternative is better as well.
- Formalization: if \(y_{i}>y_{i}^{\prime}\) for all \(i\), then \(y \succ y^{\prime}\).

Full Screen

Close
- Fact: quantities \(y_{i}\) describe completely different physical notions, measured in completely different units.
- Examples: wind velocities measured in \(\mathrm{m} / \mathrm{s}, \mathrm{km} / \mathrm{h}\), \(\mathrm{mi} / \mathrm{h}\); elevations in \(\mathrm{m}, \mathrm{km}\), ft.
- Each of these quantities can be described in many different units.
- A priori, we do not know which units match each other.
- Units used for measuring different quantities may not be exactly matched.
- It is reasonable to require that:
- if we simply change the units in which we measure each of the corresponding \(n\) quantities,
- the relations \(\succ\) and \(\sim\) between the alternatives \(y=\) \(\left(y_{1}, \ldots, y_{n}\right)\) and \(y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)\) do not change.

From Utility to

Beyond Interval.
Multi-Agent.
Beyond Optimization
Even Further Beyond
Acknowledgments
Home Page

Title Page

Full Screen

Close
32. Scale Invariance: Towards a Precise Descrip-
- Situation: we replace:
- a unit in which we measure a certain quantity \(q\)
- by a new measuring unit which is \(\lambda>0\) times smaller.
- Result: the numerical values of this quantity increase by a factor of \(\lambda: q \rightarrow \lambda \cdot q\).
- Example: 1 cm is \(\lambda=100\) times smaller than 1 m , so the length \(q=2\) becomes \(\lambda \cdot q=2 \cdot 100=200 \mathrm{~cm}\).
- Then, scale-invariance means that for all \(y, y^{\prime} \in\left(R^{+}\right)^{n}\)

From Utility to

Beyond Interval.
Multi-Agent.
Beyond Optimization
Even Further Beyond

Acknowledgments
Home Page

Title Page
- \(y=\left(y_{1}, \ldots, y_{n}\right) \succ y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)\) implies \(\left(\lambda_{1} \cdot y_{1}, \ldots, \lambda_{n} \cdot y_{n}\right) \succ\left(\lambda_{1} \cdot y_{1}^{\prime}, \ldots, \lambda_{n} \cdot y_{n}^{\prime}\right)\),
- \(y=\left(y_{1}, \ldots, y_{n}\right) \sim y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)\) implies \(\left(\lambda_{1} \cdot y_{1}, \ldots, \lambda_{n} \cdot y_{n}\right) \sim\left(\lambda_{1} \cdot y_{1}^{\prime}, \ldots, \lambda_{n} \cdot y_{n}^{\prime}\right)\).
- By a total pre-ordering relation on a set \(Y\), we mean
- a pair of a transitive relation \(\succ\) and an equivalence relation \(\sim\) for which,
- for every \(y, y^{\prime} \in Y\), exactly one of the following relations hold: \(y \succ y^{\prime}, y^{\prime} \succ y\), or \(y \sim y^{\prime}\).
- We say that a total pre-ordering is non-trivial if there exist \(y\) and \(y^{\prime}\) for which \(y \succ y^{\prime}\).
- We say that a total pre-ordering relation on \(\left(R^{+}\right)^{n}\) is:
- monotonic if \(y_{i}^{\prime}>y_{i}\) for all \(i\) implies \(y^{\prime} \succ y\);
- continuous if
* whenever we have a sequence \(y^{(k)}\) of tuples for which \(y^{(k)} \succeq y^{\prime}\) for some tuple \(y^{\prime}\), and * the sequence \(y^{(k)}\) tends to a limit \(y\), * then \(y \succeq y^{\prime}\).

\section*{From Utility to}

Beyond Interval.
Multi-Agent.
Beyond Optimization
Even Further Beyond.
Acknowledgments
Home Page

Title Page

Full Screen

Close

\section*{34. Main Result}

Theorem. Every non-trivial monotonic scale-inv. continuous total pre-ordering relation on \(\left(R^{+}\right)^{n}\) has the form:
\[
\begin{aligned}
& y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) \succ y=\left(y_{1}, \ldots, y_{n}\right) \Leftrightarrow \prod_{i=1}^{n}\left(y_{i}^{\prime}\right)^{\alpha_{i}}>\prod_{i=1}^{n} y_{i}^{\alpha_{i}} ; \\
& y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) \sim y=\left(y_{1}, \ldots, y_{n}\right) \Leftrightarrow \prod_{i=1}^{n}\left(y_{i}^{\prime}\right)^{\alpha_{i}}=\prod_{i=1}^{n} y_{i}^{\alpha_{i}},
\end{aligned}
\]
for some constants \(\alpha_{i}>0\).
Comment: Vice versa,
- for each set of values \(\alpha_{1}>0, \ldots, \alpha_{n}>0\),
- the above formulas define a monotonic scale-invariant continuous pre-ordering relation on \(\left(R^{+}\right)^{n}\).
```

Page 35 of 55

```

Go Back

Full Screen

Close

\section*{35. Practical Conclusion}
- Situation:
- we need to select an alternative;
- each alternative is characterized by characteristics \(y_{1}, \ldots, y_{n}\).
- Traditional approach:

\section*{From Utility to}

\section*{Beyond Interval}

\section*{Multi-Agent}
- we assign the weights \(w_{i}\) to different characteristics;
- we select the alternative with the largest value of \(\sum_{i=1}^{n} w_{i} \cdot y_{i}\).
- New result: it is better to select an alternative with the largest value of \(\prod_{i=1}^{n} y_{i}^{w_{i}}\).
- Equivalent reformulation: select an alternative with the largest value of \(\sum_{i=1}^{n} w_{i} \cdot \ln \left(y_{i}\right)\).

Full Screen

Close

\section*{36. Multi-Agent Cooperative Decision Making}
- How to describe preferences: for each participant \(P_{i}\), we can determine the utility \(u_{i j} \stackrel{\text { def }}{=} u_{i}\left(A_{j}\right)\) of all \(A_{j}\).
- Question: how to transform these utilities into a reasonable group decision rule?
- Solution: was provided by another future Nobelist John Nash.

Home Page
- Nash's assumptions:
- symmetry,
- independence from irrelevant alternatives, and
- scale invariance - under replacing function \(u_{i}(A)\) with an equivalent function \(a \cdot u_{i}(A)\),
- Nash's assumptions (reminder):
- symmetry,
- independence from irrelevant alternatives, and
- scale invariance.
- Nash's result:
- the only group decision rule satisfying all these assumptions
- is selecting an alternative \(A\) for which the product
\[
\prod_{i=1}^{n} u_{i}(A) \text { is the largest possible. }
\]

\section*{From Utility to}

\section*{Beyond Interval}

\section*{Multi-Agent}
```

    Title Page
    ```

Full Screen

Close
38. Multi-Agent Decision Making under Interval
- Reminder: if we set utility of status quo to 0 , then we select an alternative \(A\) that maximizes
\[
u(A)=\prod_{i=1}^{n} u_{i}(A)
\]
- Case of interval uncertainty: we only know intervals \(\left[\underline{u}_{i}(A), \bar{u}_{i}(A)\right]\).
- First idea: find all \(A_{0}\) for which \(\bar{u}\left(A_{0}\right) \geq \max _{A} \underline{u}(A)\), where
\[
[\underline{u}(A), \bar{u}(A)] \stackrel{\text { def }}{=} \prod_{i=1}^{n}\left[\underline{u}_{i}(A), \bar{u}_{i}(A)\right] .
\]
- Second idea: maximize \(u^{\text {equiv }}(A) \stackrel{\text { def }}{=} \prod_{i=1}^{n} u_{i}^{\text {equiv }}(A)\).
- Interesting aspect: when we have a conflict situation (e.g., in security games).

Title Page
```

Page 39 of 55

Go Back
From Utility to

Beyond Interval.
Multi-Agent.
Beyond Optimization
Even Further Beyond

Acknowledgments
Home Page

Full Screen

Close

- Traditional interval computations:
- we know the intervals $X_{1}, \ldots, X_{n}$ containing $x_{1}, \ldots, x_{n}$;
- we know that a quantity $z$ depends on $x=\left(x_{1}, \ldots, x_{n}\right)$ :

$$
z=f\left(x_{1}, \ldots, x_{n}\right)
$$

- we want to find the range $Z$ of possible values of $z$ :

$$
Z=\left[\min _{x \in X} f(x), \max _{x \in X} f(x)\right]
$$

- Control situations:
- the value $z=f(x, u)$ also depends on the control variables $u=\left(u_{1}, \ldots, u_{m}\right)$;
- we want to find $Z$ for which, for every $x_{i} \in X_{i}$, we can get $z \in Z$ by selecting appropriate $u_{j} \in U_{j}$ :

$$
\forall x \exists u(z=f(x, u) \in Z) .
$$

```
Close
```

40. Reformulation in Logical Terms - of Modal

- Reminder: we want $\forall x_{\in X} \exists u_{\in U}(f(x, u) \in Z)$.
- There is a logical difference between intervals $X$ and $U$.
- The property $f(x, u) \in Z$ must hold
- for all possible values $x_{i} \in X_{i}$, but
- for some values $u_{j} \in U_{j}$.
- We can thus consider pairs of intervals and quantifiers (modal intervals):
- each original interval $X_{i}$ is a pair $\left\langle X_{i}, \forall\right\rangle$, while
- controlled interval is a pair $\left\langle U_{j}, \exists\right\rangle$.
- We can treat the resulting interval $Z$ as the range defined over modal intervals:

$$
Z=f\left(\left\langle X_{1}, \forall\right\rangle, \ldots,\left\langle X_{n}, \forall\right\rangle,\left\langle U_{1}, \exists\right\rangle, \ldots,\left\langle U_{m}, \exists\right\rangle\right) .
$$

- In more complex situations, we need to go beyond control.
- For example, in the presence of an adversary, we want to make a decision $x$ such that:
- for every possible reaction $y$ of an adversary,
- we will be able to make a next decision $x^{\prime}$ (depending on $y$ )
- so that after every possible next decision $y^{\prime}$ of an adversary,
- the resulting state $s\left(x, y, x^{\prime}, y^{\prime}\right)$ will be in the desired set:

$$
\forall y \exists x^{\prime} \forall y^{\prime}\left(s\left(x, y, x^{\prime}, y^{\prime}\right) \in S\right)
$$

- In this case, we arrive at general Shary's classes.

Full Screen

Close
42. Acknowledgments

This work was supported in part:

- by the National Science Foundation grants HRD-0734825, HRD-1242122, and DUE-0926721, and
- by Grant 1 T36 GM078000-01 from the National Institutes of Health.

From Utility to

Beyond Interval.
Multi-Agent .
Beyond Optimization

Even Further Beyond

Acknowledgments
Home Page

Title Page

44

Page 43 of 55

Go Back

Full Screen

Close

Quit
43. Extension of Interval Arithmetic to Proba-

- General solution: parse to elementary operations +, $-, \cdot, 1 / x$, max, min.
- Explicit formulas for arithmetic operations are known:

From Utility to

Beyond Interval.
Multi-Agent .
Beyond Optimization
Even Further Beyond.

Acknowledgments
Home Page

- for p-boxes $\mathbf{F}(x)=[\underline{F}(x), \bar{F}(x)]$,
- for intervals +1 st moments $E_{i} \stackrel{\text { def }}{=} E\left[x_{i}\right]$ :

```
Title Page
```



Full Screen

Close
44. Extension of Interval Arithmetic to Proba-

- Easy cases: +, -, product of independent $x_{i}$.
- Example of a non-trivial case: multiplication $y=x_{1} \cdot x_{2}$, when we have no info about correlation.
- Solution for this case: for $p_{i} \stackrel{\text { def }}{=}\left(E_{i}-\underline{x}_{i}\right) /\left(\bar{x}_{i}-\underline{x}_{i}\right)$, we get:
- $\underline{E}=\max \left(p_{1}+p_{2}-1,0\right) \cdot \bar{x}_{1} \cdot \bar{x}_{2}+\min \left(p_{1}, 1-p_{2}\right) \cdot \bar{x}_{1} \cdot \underline{x}_{2}+$ $\min \left(1-p_{1}, p_{2}\right) \cdot \underline{x}_{1} \cdot \bar{x}_{2}+\max \left(1-p_{1}-p_{2}, 0\right) \cdot \underline{x}_{1} \cdot \underline{x}_{2} ;$
- $\bar{E}=\min \left(p_{1}, p_{2}\right) \cdot \bar{x}_{1} \cdot \bar{x}_{2}+\max \left(p_{1}-p_{2}, 0\right) \cdot \bar{x}_{1} \cdot \underline{x}_{2}+$ $\max \left(p_{2}-p_{1}, 0\right) \cdot \underline{x}_{1} \cdot \bar{x}_{2}+\min \left(1-p_{1}, 1-p_{2}\right) \cdot \underline{x}_{1} \cdot \underline{x}_{2}$.

The Notion of Utility
From Utility to

Beyond Interval.
Multi-Agent.
Beyond Optimization
Even Further Beyond
Acknowledgments
Home Page

Title Page

Full Screen

Close
45. Extension of Interval Arithmetic to Probabilistic Case: Challenges

- intervals $+2 n d$ moments:


From Utility to

Beyond Interval.
Multi-Agent.
Beyond Optimization
Even Further Beyond

Acknowledgments
Home Page

Title Page

Full Screen

Close

- Practical problem: find genetic difference between cancer cells and healthy cells.
- Ideal case: we directly measure concentration $c$ of the gene in cancer cells and $h$ in healthy cells.
- In reality: difficult to separate.

From Utility to

Beyond Interval
Multi-Agent.
Beyond Optimization
Even Further Beyond
Acknowledgments
Home Page

- Solution: we measure $y_{i} \approx x_{i} \cdot c+\left(1-x_{i}\right) \cdot h$, where $x_{i}$ is the percentage of cancer cells in $i$-th sample.
- Equivalent form: $a \cdot x_{i}+h \approx y_{i}$, where $a \stackrel{\text { def }}{=} c-h$.

Title Page

```
Page 47 of 55
```

Go Back

Full Screen

Close

Quit

## 47. Case Study: Bioinformatics (cont-d)

- If we know $x_{i}$ exactly: Least Squares Method
$\sum_{i=1}^{n}\left(a \cdot x_{i}+h-y_{i}\right)^{2} \rightarrow \min _{a, h}$, hence $a=\frac{C(x, y)}{V(x)}$ and
$h=E(y)-a \cdot E(x)$, where $E(x)=\frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}$,

$$
V(x)=\frac{1}{n-1} \cdot \sum_{i=1}^{n}\left(x_{i}-E(x)\right)^{2}
$$

$$
C(x, y)=\frac{1}{n-1} \cdot \sum_{i=1}^{n}\left(x_{i}-E(x)\right) \cdot\left(y_{i}-E(y)\right)
$$

- Interval uncertainty: experts manually count $x_{i}$, and only provide interval bounds $\mathbf{x}_{i}$, e.g., $x_{i} \in[0.7,0.8]$.
- Problem: find the range of $a$ and $h$ corresponding to all possible values $x_{i} \in\left[\underline{x}_{i}, \bar{x}_{i}\right]$.

48. Extension of Interval Arithmetic to Proba-

- General problem:
- we know intervals $\mathbf{x}_{1}=\left[\underline{x}_{1}, \bar{x}_{1}\right], \ldots, \mathbf{x}_{n}=\left[\underline{x}_{n}, \bar{x}_{n}\right]$,
- compute the range of $E(x)=\frac{1}{n} \sum_{i=1}^{n} x_{i}$, population

$$
\text { variance } V=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-E(x)\right)^{2} \text {, etc. }
$$

From Utility to

Beyond Interval
Multi-Agent.
Beyond Optimization
Even Further Beyond

Acknowledgments
Home Page

Title Page

Full Screen

- Bioinformatics case: find intervals for $C(x, y)$ and for $V(x)$ and divide.


## 49. Proof of Symmetry Result: Part 1

- Due to scale-invariance, for every $y_{1}, \ldots, y_{n}, y_{1}^{\prime}, \ldots$,


## From Utility to

## Beyond Interval

## Multi-Agent

Beyond Optimization
Even Further Beyond
Acknowledgments
Home Page

Title Page

- Similarly,
$\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) \succ\left(y_{1}, \ldots, y_{n}\right) \Leftrightarrow\left(\frac{y_{1}^{\prime}}{y_{1}}, \ldots, \frac{y_{n}^{\prime}}{y_{n}}\right) \succ(1, \ldots, 1)$.
- Thus, to describe the ordering relation $\succ$, it is sufficient to describe the set $\left\{z=\left(z_{1}, \ldots, z_{n}\right): z \succ(1, \ldots, 1)\right\}$.
- Similarly, it is also sufficient to describe the set

Full Screen

Close

$$
\left\{z=\left(z_{1}, \ldots, z_{n}\right):(1, \ldots, 1) \succ z\right\}
$$

- To simplify: take logarithms $Y_{i}=\ln \left(y_{i}\right)$, and sets

$$
\begin{aligned}
& S_{\sim}=\left\{Z: z=\left(\exp \left(Z_{1}\right), \ldots, \exp \left(Z_{n}\right)\right) \sim(1, \ldots, 1)\right\}, \\
& S_{\succ}=\left\{Z: z=\left(\exp \left(Z_{1}\right), \ldots, \exp \left(Z_{n}\right)\right) \succ(1, \ldots, 1)\right\} ; \\
& S_{\prec}=\left\{Z:(1, \ldots, 1) \succ z=\left(\exp \left(Z_{1}\right), \ldots, \exp \left(Z_{n}\right)\right)\right\} .
\end{aligned}
$$

- Since the pre-ordering relation is total, for $Z$, either


## From Utility to

## Beyond Interval

## Multi-Agent

 $Z \in S_{\sim}$ or $Z \in S_{\succ}$ or $Z \in S_{\prec}$.- Lemma: $S_{\sim}$ is closed under addition:
- $Z \in S_{\sim}$ means $\left(\exp \left(Z_{1}\right), \ldots, \exp \left(Z_{n}\right)\right) \sim(1, \ldots, 1)$;
- due to scale-invariance, we have $\left(\exp \left(Z_{1}+Z_{1}^{\prime}\right), \ldots\right)=\left(\exp \left(Z_{1}\right) \cdot \exp \left(Z_{1}^{\prime}\right), \ldots\right) \sim\left(\exp \left(Z_{1}^{\prime}\right), \ldots\right) ;$
- also, $Z^{\prime} \in S_{\sim}$ means $\left(\exp \left(Z_{1}^{\prime}\right), \ldots\right) \sim(1, \ldots, 1)$;

Go Back

Full Screen

Close

## 51. Proof of Symmetry Result: Part 3

- Reminder: the set $S_{\sim}$ is closed under addition;


## From Utility to

## Beyond Interval

- Similarly, $S_{\prec}$ and $S_{\succ}$ are closed under addition.
- Conclusion: for every integer $q>0$ :
- if $Z \in S_{\sim}$, then $q \cdot Z \in S_{\sim}$;
- if $Z \in S_{\succ}$, then $q \cdot Z \in S_{\succ}$;
- if $Z \in S_{\prec}$, then $q \cdot Z \in S_{\prec}$.

Multi-Agent.
Beyond Optimization
Even Further Beyond
Acknowledgments
Home Page

Title Page

- Thus, if $Z \in S_{\sim}$ and $q \in N$, then $(1 / q) \cdot Z \in S_{\sim}$.
- We can also prove that $S_{\sim}$ is closed under $Z \rightarrow-Z$ :
- $Z=\left(Z_{1}, \ldots\right) \in S_{\sim}$ means $\left(\exp \left(Z_{1}\right), \ldots\right) \sim(1, \ldots)$;
- by scale invariance, $(1, \ldots) \sim\left(\exp \left(-Z_{1}\right), \ldots\right)$, i.e., $-Z \in S_{\sim}$.
- Similarly, $Z \in S_{\succ} \Leftrightarrow-Z \in S_{\prec}$.
- So $Z \in S_{\sim} \Rightarrow(p / q) \cdot Z \in S_{\sim}$; in the limit, $x \cdot Z \in S_{\sim}$.


## 52. Proof of Symmetry Result: Final Part

- Reminder: $S_{\sim}$ is closed under addition and multiplication by a scalar, so it is a linear space.
- Fact: $S_{\sim}$ cannot have full dimension $n$, since then all alternatives will be equivalent to each other.
- Fact: $S_{\sim}$ cannot have dimension $<n-1$, since then:

From Utility to

Beyond Interval.
Multi-Agent.
Beyond Optimization
Even Further Beyond
Acknowledgments
Home Page

Title Page

- connect it $\mathrm{w} /-Z \in S_{\succ}$ by a path $\gamma$ that avoids $S_{\sim}$;
- due to closeness, $\exists \gamma\left(t^{*}\right)$ in the limit of $S_{\succ}$ and $S_{\prec}$;
- thus, $\gamma\left(t^{*}\right) \in S_{\sim}-$ a contradiction.
- Every $(n-1)$-dim lin. space has the form $\sum_{i=1}^{n} \alpha_{i} \cdot Y_{i}=0$.
- Thus, $Y \in S_{\succ} \Leftrightarrow \sum \alpha_{i} \cdot Y_{i}>0$, and

$$
y \succ y^{\prime} \Leftrightarrow \sum \alpha_{i} \cdot \ln \left(y_{i} / y_{i}^{\prime}\right)>0 \Leftrightarrow \prod y_{i}^{\alpha_{i}}>\prod y_{i}^{\prime \alpha_{i}}
$$

## Close

- S. Ferson, V. Kreinovich, J. Hajagos, W. Oberkampf, L. Ginzburg, Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty, Sandia National Laboratories, 2007, Publ. 2007-0939.
- E. Gardeñes et al., Modal intervals, Reliable Computing, 7 (2001), pp. 77-111.
- A. Jaimes, C. Tweedie, V. Kreinovich, M. CeBERIO, Scale-invariant approach to multi-criterion optimization under uncertainty, with applications to optimal sensor placement, in particular, to sensor placement in environmental research, International Journal of Reliability and Safety, 6 (2012), No. 1-3, pp. 188203.

Screen

Close

## Decision Making

The Notion of Utility

- R. E. Moore, R.B. Kearfott, M. J. Cloud, Introduction to Interval Analysis, SIAM, Philadelphia, 2009.
- H. T. Nguyen, V. Kreinovich, Applications of continuous mathematics to computer science, Kluwer, Dordrecht, 1997.
- H. T. Nguyen, V. Kreinovich, B. Wu, G. XiANG, Computing Statistics under Interval and Fuzzy Uncertainty, Springer Verlag, 2012.
- H. Raiffa, Decision Analysis, McGraw-Hill, Columbus, Ohio, 1997.

From Utility to .
Beyond Interval
Multi-Agent
Beyond Optimization
Even Further Beyond
Acknowledgments

Home Page

Title Page
44

```
4
```

```
Page 55 of 55
```

Go Back

Full Screen

Close

Quit


[^0]:    Close

