Decision Making under Interval Uncertainty

Vladik Kreinovich

Department of Computer Science University of Texas at El Paso El Paso, TX 79968, USA vladik@utep.edu

http://www.cs.utep.edu/vladik

- 1. Decision Making: General Need and Traditional Approach
 - To make a decision, we must:
 - find out the user's preference, and
 - help the user select an alternative which is the best
 according to these preferences.
 - Traditional approach is based on an assumption that for each two alternatives A' and A'', a user can tell:
 - whether the first alternative is better for him/her; we will denote this by A'' < A';
 - or the second alternative is better; we will denote this by A' < A'';
 - or the two given alternatives are of equal value to the user; we will denote this by A' = A''.

2. The Notion of Utility

- Under the above assumption, we can form a natural numerical scale for describing preferences.
- Let us select a very bad alternative A_0 and a very good alternative A_1 .
- Then, most other alternatives are better than A_0 but worse than A_1 .
- For every prob. $p \in [0, 1]$, we can form a lottery L(p) in which we get A_1 w/prob. p and A_0 w/prob. 1 p.
- When p = 0, this lottery simply coincides with the alternative A_0 : $L(0) = A_0$.
- The larger the probability p of the positive outcome increases, the better the result:

p' < p'' implies L(p') < L(p'').

3. The Notion of Utility (cont-d)

- Finally, for p = 1, the lottery coincides with the alternative A_1 : $L(1) = A_1$.
- Thus, we have a continuous scale of alternatives L(p) that monotonically goes from $L(0) = A_0$ to $L(1) = A_1$.
- Due to monotonicity, when p increases, we first have L(p) < A, then we have L(p) > A.
- The threshold value is called the *utility* of the alternative A:

$$u(A) \stackrel{\text{def}}{=} \sup\{p : L(p) < A\} = \inf\{p : L(p) > A\}.$$

• Then, for every $\varepsilon > 0$, we have

 $L(u(A) - \varepsilon) < A < L(u(A) + \varepsilon).$

• We will describe such (almost) equivalence by \equiv , i.e., we will write that $A \equiv L(u(A))$.

Decision Making:			
The Notion of Utility			
From Utility to			
Beyond Interval			
Multi-Agent			
Beyond Optimization			
Even Further Beyond			
Acknowledgments			
Home Page			
Title Page			
•• >>			
Page 4 of 55			
Go Back			
Full Screen			
Close			
Quit			

4. Fast Iterative Process for Determining u(A)

- *Initially:* we know the values $\underline{u} = 0$ and $\overline{u} = 1$ such that $A \equiv L(u(A))$ for some $u(A) \in [\underline{u}, \overline{u}]$.
- What we do: we compute the midpoint u_{mid} of the interval $[\underline{u}, \overline{u}]$ and compare A with $L(u_{\text{mid}})$.
- Possibilities: $A \leq L(u_{\text{mid}})$ and $L(u_{\text{mid}}) \leq A$.
- Case 1: if $A \leq L(u_{\text{mid}})$, then $u(A) \leq u_{\text{mid}}$, so $u \in [\underline{u}, u_{\text{mid}}].$

• Case 2: if
$$L(u_{\text{mid}}) \leq A$$
, then $u_{\text{mid}} \leq u(A)$, so
 $u \in [u_{\text{mid}}, \overline{u}].$

- After each iteration, we decrease the width of the interval $[\underline{u}, \overline{u}]$ by half.
- After k iterations, we get an interval of width 2^{-k} which contains u(A) i.e., we get u(A) w/accuracy 2^{-k} .

- 5. How to Make a Decision Based on Utility Values
 - Suppose that we have found the utilities u(A'), u(A''), ..., of the alternatives A', A'', ...
 - Which of these alternatives should we choose?
 - By definition of utility, we have:
 - $A \equiv L(u(A))$ for every alternative A, and
 - L(p') < L(p'') if and only if p' < p''.
 - We can thus conclude that A' is preferable to A'' if and only if u(A') > u(A'').
 - In other words, we should always select an alternative with the largest possible value of utility.
 - Interval techniques can help in finding the optimizing decision.

6. How to Estimate Utility of an Action

- For each action, we usually know possible outcomes S_1, \ldots, S_n .
- We can often estimate the prob. p_1, \ldots, p_n of these outcomes.
- By definition of utility, each situation S_i is equiv. to a lottery $L(u(S_i))$ in which we get:
 - A_1 with probability $u(S_i)$ and
 - A_0 with the remaining probability $1 u(S_i)$.
- Thus, the action is equivalent to a complex lottery in which:
 - first, we select one of the situations S_i with probability p_i : $P(S_i) = p_i$;
 - then, depending on S_i , we get A_1 with probability $P(A_1 | S_i) = u(S_i)$ and A_0 w/probability $1 u(S_i)$.

7. How to Estimate Utility of an Action (cont-d)

• Reminder:

- first, we select one of the situations S_i with probability p_i : $P(S_i) = p_i$;
- then, depending on S_i , we get A_1 with probability $P(A_1 | S_i) = u(S_i)$ and A_0 w/probability $1 u(S_i)$.
- The prob. of getting A_1 in this complex lottery is:

$$P(A_1) = \sum_{i=1}^{n} P(A_1 | S_i) \cdot P(S_i) = \sum_{i=1}^{n} u(S_i) \cdot p_i.$$

• In the complex lottery, we get:

•
$$A_1$$
 with prob. $u = \sum_{i=1}^n p_i \cdot u(S_i)$, and
• A_0 w/prob. $1 - u$.

• So, we should select the action with the largest value of expected utility $u = \sum p_i \cdot u(S_i)$.

8. Non-Uniqueness of Utility

- The above definition of utility u depends on A_0 , A_1 .
- What if we use different alternatives A'_0 and A'_1 ?
- Every A is equivalent to a lottery L(u(A)) in which we get A_1 w/prob. u(A) and A_0 w/prob. 1 u(A).
- For simplicity, let us assume that $A'_0 < A_0 < A_1 < A'_1$.
- Then, $A_0 \equiv L'(u'(A_0))$ and $A_1 \equiv L'(u'(A_1))$.
- So, A is equivalent to a complex lottery in which:
 - 1) we select A_1 w/prob. u(A) and A_0 w/prob. 1-u(A);
 - 2) depending on A_i , we get A'_1 w/prob. $u'(A_i)$ and A'_0 w/prob. $1 u'(A_i)$.
- In this complex lottery, we get A'_1 with probability $u'(A) = u(A) \cdot (u'(A_1) u'(A_0)) + u'(A_0).$
- So, in general, utility is defined modulo an (increasing) linear transformation $u' = a \cdot u + b$, with a > 0.

De	ecision Ma	king:
Т	he Notion	of Utility
Fr	om Utility	to
Be	eyond Inte	rval
М	ulti-Agent	
Be	eyond Opt	imization
E١	en Furthe	r Beyond
Ad	cknowledg	ments
	Ноте	e Page
	Title	Page
	11110	1 age
	44	→ →
	•	Image
	Image	9 of 55
	Image Image	9 of 55
	Ad Page : Go	9 of 55 Back
	Interview of the second se	9 of 55 Back
	Interview of the second se	9 of 55 Back
		9 of 55 Back Screen

9. Subjective Probabilities

- In practice, we often do not know the probabilities p_i of different outcomes.
- For each event E, a natural way to estimate its subjective probability is to fix a prize (e.g., \$1) and compare:
 - the lottery ℓ_E in which we get the fixed prize if the event E occurs and 0 is it does not occur, with
 - a lottery $\ell(p)$ in which we get the same amount with probability p.
- Here, similarly to the utility case, we get a value ps(E) for which, for every $\varepsilon > 0$:

$$\ell(ps(E) - \varepsilon) < \ell_E < \ell(ps(E) + \varepsilon).$$

• Then, the utility of an action with possible outcomes S_1, \ldots, S_n is equal to $u = \sum_{i=1}^n ps(E_i) \cdot u(S_i)$.

De	ecision Ma	king:		
Τł	he Notion	of Utility		
Fr	From Utility to			
Be	Beyond Interval			
Multi-Agent				
Be	eyond Opt	imization		
Εv	en Furthe	r Beyond		
Ac	cknowledg	ments		
	Ноте	e Page		
	Title	Page		
	••	••		
	•			
	Page 10 of 55			
	Go	Back		
	Full S	Screen		
	CI	ose		
	Q	uit		

- 10. Beyond Traditional Decision Making: Towards a More Realistic Description
 - Previously, we assumed that a user can always decide which of the two alternatives A' and A" is better:
 - either A' < A'',
 - or A'' < A',

 $- \text{ or } A' \equiv A''.$

- In practice, a user is sometimes unable to meaningfully decide between the two alternatives; denoted $A' \parallel A''$.
- In mathematical terms, this means that the preference relation:
 - is no longer a *total* (linear) order,
 - it can be a *partial* order.

11. From Utility to Interval-Valued Utility

- Similarly to the traditional decision making approach:
 - we select two alternatives $A_0 < A_1$ and
 - we compare each alternative A which is better than A_0 and worse than A_1 with lotteries L(p).
- \bullet Since preference is a partial order, in general:

$$\underline{u}(A) \stackrel{\text{def}}{=} \sup\{p : L(p) < A\} < \overline{u}(A) \stackrel{\text{def}}{=} \inf\{p : L(p) > A\}.$$

• For each alternative A, instead of a single value u(A) of the utility, we now have an *interval* [$\underline{u}(A), \overline{u}(A)$] s.t.:

$$-$$
 if $p < \underline{u}(A)$, then $L(p) < A$;

- if $p > \overline{u}(A)$, then A < L(p); and
- $\text{ if } \underline{u}(A)$
- We will call this interval the *utility* of the alternative A.

- 12. Interval-Valued Utilities and Interval-Valued Subjective Probabilities
 - To feasibly elicit the values $\underline{u}(A)$ and $\overline{u}(A)$, we:
 - 1) starting w/[$\underline{u}, \overline{u}$] = [0, 1], bisect an interval s.t. $L(\underline{u}) < A < L(\overline{u})$ until we find u_0 s.t. $A \parallel L(u_0)$;
 - 2) by bisecting an interval $[\underline{u}, u_0]$ for which $L(\underline{u}) < A \parallel L(u_0)$, we find $\underline{u}(A)$;
 - 3) by bisecting an interval $[u_0, \overline{u}]$ for which $L(u_0) \parallel A < L(\overline{u})$, we find $\overline{u}(A)$.
 - Similarly, when we estimate the probability of an event $E\colon$
 - we no longer get a single value ps(E);
 - we get an *interval* $[\underline{ps}(E), \overline{ps}(E)]$ of possible values of probability.
 - By using bisection, we can feasibly elicit the values $\underline{ps}(E)$ and $\overline{ps}(E)$.

13. Decision Making Under Interval Uncertainty

- Situation: for each possible decision d, we know the interval $[\underline{u}(d), \overline{u}(d)]$ of possible values of utility.
- *Questions:* which decision shall we select?
- Natural idea: select all decisions d_0 that may be optimal, i.e., which are optimal for some function

 $u(d) \in [\underline{u}(d), \overline{u}(d)].$

- *Problem:* checking all possible functions is not feasible.
- *Solution:* the above condition is equivalent to an easier-to-check one:

$$\overline{u}(d_0) \ge \max_d \underline{u}(d).$$

- Interval computations can help in describing the range of all such d_0 .
- *Remaining problem:* in practice, we would like to select *one* decision; which one should be select?

14. Need for Definite Decision Making

- At first glance: if $A' \parallel A''$, it does not matter whether we recommend alternative A' or alternative A''.
- Let us show that this is *not* a good recommendation.
- E.g., let A be an alternative about which we know nothing, i.e., $[\underline{u}(A), \overline{u}(A)] = [0, 1].$
- In this case, A is indistinguishable both from a "good" lottery L(0.999) and a "bad" lottery L(0.001).
- Suppose that we recommend, to the user, that A is equivalent both to L(0.999) and to L(0.001).
- Then this user will feel comfortable:
 - first, exchanging L(0.999) with A, and
 - then, exchanging A with L(0.001).
- So, following our recommendations, the user switches from a very good alternative to a very bad one.

Decision Ma	aking:		
The Notion of Utility			
From Utility to			
Beyond Interval			
Multi-Agent			
Beyond Opt	imization		
Even Furthe	er Beyond		
Acknowledg	ments		
Hom	e Page		
Title	Page		
44	••		
•			
Page	15 of 55		
Go	Back		
Full :	Screen		
C	lose		
Ģ	Duit		

15. Need for Definite Decision Making (cont-d)

- The above argument does not depend on the fact that we assumed complete ignorance about A:
 - every time we recommend that the alternative A is "equivalent" both to L(p) and to L(p') (p < p'),
 - we make the user vulnerable to a similar switch from a better alternative L(p') to a worse one L(p).
- Thus, there should be only a single value p for which A can be reasonably exchanged with L(p).
- In precise terms:
 - we start with the utility interval $[\underline{u}(A), \overline{u}(A)]$, and
 - we need to select a single u(A) for which it is reasonable to exchange A with a lottery L(u).
- How can we find this value u(A)?

De	ecision Ma	king:		
The Notion of Utility				
Fr	From Utility to			
Be	Beyond Interval			
Multi-Agent				
Be	eyond Opt	imization		
Eν	en Furthe	r Beyond		
Ad	cknowledg	ments		
	Home	e Page		
	Title	Page		
	44	••		
	•			
	Page 1	6 of 55		
	Go	Back		
	Full S	Screen		
	CI	ose		
	Q	uit		

- 16. Decisions under Interval Uncertainty: Hurwicz Optimism-Pessimism Criterion
 - Reminder: we need to assign, to each interval $[\underline{u}, \overline{u}]$, a utility value $u(\underline{u}, \overline{u}) \in [\underline{u}, \overline{u}]$.
 - *History:* this problem was first handled in 1951, by the future Nobelist Leonid Hurwicz.

• Notation: let us denote $\alpha_H \stackrel{\text{def}}{=} u(0,1)$.

- Reminder: utility is determined modulo a linear transformation $u' = a \cdot u + b$.
- Reasonable to require: the equivalent utility does not change with re-scaling: for a > 0 and b,

$$u(a \cdot u^{-} + b, a \cdot u^{+} + b) = a \cdot u(u^{-}, u^{+}) + b.$$

• For $u^- = 0$, $u^+ = 1$, $a = \overline{u} - \underline{u}$, and $b = \underline{u}$, we get

$$u(\underline{u},\overline{u}) = \alpha_H \cdot (\overline{u} - \underline{u}) + \underline{u} = \alpha_H \cdot \overline{u} + (1 - \alpha_H) \cdot \underline{u}.$$

Decision Making: ... The Notion of Utility From Utility to Beyond Interval ... Multi-Agent . . . Beyond Optimization Even Further Beyond . . Acknowledgments Home Page Title Page 44 Page 17 of 55 Go Back Full Screen Close Quit

17. Hurwicz Optimism-Pessimism Criterion (cont)

- The expression $\alpha_H \cdot \overline{u} + (1 \alpha_H) \cdot \underline{u}$ is called *optimism*pessimism criterion, because:
 - when $\alpha_H = 1$, we make a decision based on the most optimistic possible values $u = \overline{u}$;
 - when $\alpha_H = 0$, we make a decision based on the most pessimistic possible values $u = \underline{u}$;
 - for intermediate values $\alpha_H \in (0, 1)$, we take a weighted average of the optimistic and pessimistic values.
- According to this criterion:
 - if we have several alternatives A', \ldots , with intervalvalued utilities $[\underline{u}(A'), \overline{u}(A')], \ldots$,
 - we recommend an alternative A that maximizes

$$\alpha_H \cdot \overline{u}(A) + (1 - \alpha_H) \cdot \underline{u}(A).$$

- 18. Which Value α_H Should We Choose? An Argument in Favor of $\alpha_H = 0.5$
 - Let us take an event E about which we know nothing.
 - For a lottery L^+ in which we get A_1 if E and A_0 otherwise, the utility interval is [0, 1].
 - Thus, the equiv. utility of L^+ is $\alpha_H \cdot 1 + (1 \alpha_H) \cdot 0 = \alpha_H$.
 - For a lottery L^- in which we get A_0 if E and A_1 otherwise, the utility is [0, 1], so equiv. utility is also α_H .
 - For a complex lottery L in which we select either L^+ or L^- with probability 0.5, the equiv. utility is still α_H .
 - On the other hand, in L, we get A_1 with probability 0.5 and A_0 with probability 0.5.
 - Thus, L = L(0.5) and hence, u(L) = 0.5.
 - So, we conclude that $\alpha_H = 0.5$.

Decision Making:			
The Notion of Utility			
From Utility to			
Beyond Interval			
Multi-Agent			
Beyond Opti	imization		
Even Furthe	r Beyond		
Acknowledgi	ments		
Ноте	e Page		
Title	Page		
••	••		
•			
Page 1	9 of 55		
Gol	Back		
Full S	Screen		
Cle	ose		
0	uit		

19. Which Action Should We Choose?

- Suppose that an action has *n* possible outcomes S_1, \ldots, S_n , with utilities $[\underline{u}(S_i), \overline{u}(S_i)]$, and probabilities $[p_i, \overline{p}_i]$.
- We know that each alternative is equivalent to a simple lottery with utility $u_i = \alpha_H \cdot \overline{u}(S_i) + (1 \alpha_H) \cdot \underline{u}(S_i)$.
- We know that for each *i*, the *i*-th event is equivalent to $p_i = \alpha_H \cdot \overline{p}_i + (1 \alpha_H) \cdot \underline{p}_i$.
- Thus, this action is equivalent to a situation in which we get utility u_i with probability p_i .
- The utility of such a situation is equal to $\sum_{i=1}^{n} p_i \cdot u_i$.
- Thus, the equivalent utility of the original action is equivalent to

$$\sum_{i=1}^{n} \left(\alpha_{H} \cdot \overline{p}_{i} + (1 - \alpha_{H}) \cdot \underline{p}_{i} \right) \cdot \left(\alpha_{H} \cdot \overline{u}(S_{i}) + (1 - \alpha_{H}) \cdot \underline{u}(S_{i}) \right).$$

- 20. Observation: the Resulting Decision Depends on the Level of Detail
 - Let us consider a situation in which, with some prob. p, we gain a utility u, else we get 0.
 - The expected utility is $p \cdot u + (1-p) \cdot 0 = p \cdot u$.
 - Suppose that we only know the intervals $[\underline{u}, \overline{u}]$ and $[\underline{p}, \overline{p}]$.
 - The equivalent utility u_k (k for know) is

$$u_k = (\alpha_H \cdot \overline{p} + (1 - \alpha_H) \cdot \underline{p}) \cdot (\alpha_H \cdot \overline{u} + (1 - \alpha_H) \cdot \underline{u}).$$

- If we only know that utility is from $[\underline{p} \cdot \underline{u}, \overline{p} \cdot \overline{u}]$, then: $u_d = \alpha_H \cdot \overline{p} \cdot \overline{u} + (1 - \alpha_H) \cdot \underline{p} \cdot \underline{u} \ (d \text{ for } don't \text{ know}).$
- Here, additional knowledge decreases utility:

$$u_d - u_k = \alpha_H \cdot (1 - \alpha_H) \cdot (\overline{p} - \underline{p}) \cdot (\overline{u} - \underline{u}) > 0.$$

• (This is maybe what the Book of Ecclesiastes meant by "For with much wisdom comes much sorrow"?)

- 21. Beyond Interval Uncertainty: Partial Info about Probabilities
 - Frequent situation:
 - in addition to \mathbf{x}_i ,
 - we may also have *partial* information about the probabilities of different values $x_i \in \mathbf{x}_i$.
 - An *exact* probability distribution can be described, e.g., by its cumulative distribution function

 $F_i(z) = \operatorname{Prob}(x_i \le z).$

- A *partial* information means that instead of a single cdf, we have a *class* \mathcal{F} of possible cdfs.
- *p-box* (Scott Ferson):
 - for every z, we know an interval $\mathbf{F}(z) = [\underline{F}(z), \overline{F}(z)];$
 - we consider all possible distributions for which, for all z, we have $F(z) \in \mathbf{F}(z)$.

De	Decision Making:			
тΙ	The Notion of Utility			
Fr	From Utility to			
Be	Beyond Interval			
М	Multi-Agent			
Be	eyond Opt	imization		
E١	en Furthe	r Beyond		
40	cknowledg	ments		
	Home	e Page		
	Title	Page		
	The	rage		
	44	••		
	◀			
	Dama	2 -6 -5 -		
	Page 2	2 01 55		
	Go	Back		
	Full S	Screen		
	CI	ose		
	Close			
	Quit			

- 22. Describing Partial Info about Probabilities: Decision Making Viewpoint
 - *Problem:* there are many ways to represent a probability distribution.
 - *Idea:* look for an objective.
 - Objective: make decisions $E_x[u(x,a)] \to \max_a$.
 - Case 1: smooth u(x).
 - Analysis: we have $u(x) = u(x_0) + (x x_0) \cdot u'(x_0) + \dots$
 - Conclusion: we must know moments to estimate E[u].
 - Case of uncertainty: interval bounds on moments.
 - Case 2: threshold-type u(x) (e.g., regulations).
 - Conclusion: we need cdf $F(x) = \operatorname{Prob}(\xi \le x)$.
 - Case of uncertainty: p-box $[\underline{F}(x), \overline{F}(x)]$.

23. What if Intervals are Difficult to Elicit

- *Problem:* in some situations, it is difficult to elicit even interval-valued utilities.
- *Case study:* selecting a location for a meteorological tower.
- What we can use for decision making: in many such situations, there are reasonable symmetries.
- *Good news:* in such cases, we can often use symmetries to select an optimal decision.
- We show: how this works on the case study example.

24. Case Study

- *Objective:* select the best location of a sophisticated multi-sensor meteorological tower.
- Constraints: we have several criteria to satisfy.
- *Example:* the station should not be located too close to a road.
- *Motivation:* the gas flux generated by the cars do not influence our measurements of atmospheric fluxes.
- Formalization: the distance x_1 to the road should be larger than a threshold t_1 : $x_1 > t_1$, or $y_1 \stackrel{\text{def}}{=} x_1 t_1 > 0$.
- *Example:* the inclination x_2 at the tower's location should be smaller than a threshold t_2 : $x_2 < t_2$.
- *Motivation:* otherwise, the flux determined by this inclination and not by atmospheric processes.

25. General Case

- In general: we have several differences y_1, \ldots, y_n all of which have to be non-negative.
- For each of the differences y_i , the larger its value, the better.
- Our problem is a typical setting for *multi-criteria optimization*.
- A most widely used approach to multi-criteria optimization is *weighted average*, where
 - we assign weights $w_1, \ldots, w_n > 0$ to different criteria y_i and
 - select an alternative for which the weighted average

 $w_1 \cdot y_1 + \ldots + w_n \cdot y_n$

attains the largest possible value.

26. Limitations of the Weighted Average Approach

- *In general:* the weighted average approach often leads to reasonable solutions of the multi-criteria problem.
- In our problem: we have an additional requirement that all the values y_i must be positive. So:
 - when selecting an alternative with the largest possible value of the weighted average,
 - we must only compare solutions with $y_i > 0$.
- We will show: under the requirement $y_i > 0$, the weighted average approach is not fully satisfactory.
- *Conclusion:* we need to find a more adequate solution.

- 27. Limitations of the Weighted Average Approach: Details
 - The values y_i come from measurements, and measurements are never absolutely accurate.
 - The results \tilde{y}_i of the measurements are not exactly equal to the actual (unknown) values y_i .
 - If: for some alternative $y = (y_1, \ldots, y_n)$
 - we measure the values y_i with higher and higher accuracy and,
 - based on the measurement results \tilde{y}_i , we conclude that y is better than some other alternative y'.
 - Then: we expect that the actual alternative y is indeed better than y' (or at least of the same quality).
 - Otherwise, we will not be able to make any meaningful conclusions based on real-life measurements.

- 28. The Above Natural Requirement Is Not Always Satisfied for Weighted Average
 - Simplest case: two criteria y_1 and y_2 , w/weights $w_i > 0$.
 - If $y_1, y_2, y'_1, y'_2 > 0$, and $w_1 \cdot y_1 + w_2 \cdot y_2 > w_1 \cdot y'_1 + w_2 \cdot y'_2$, then $y = (y_1, y_2) \succ y' = (y'_1, y'_2)$.
 - If $y_1 > 0$, $y_2 > 0$, and at least one of the values y'_1 and y'_2 is non-positive, then $y = (y_1, y_2) \succ y' = (y'_1, y'_2)$.
 - Let us consider, for every $\varepsilon > 0$, the tuple $y(\varepsilon) \stackrel{\text{def}}{=} (\varepsilon, 1 + w_1/w_2)$, and y' = (1, 1).
 - In this case, for every $\varepsilon > 0$, we have

$$w_1 \cdot y_1(\varepsilon) + w_2 \cdot y_2(\varepsilon) = w_1 \cdot \varepsilon + w_2 + w_2 \cdot \frac{w_1}{w_2} = w_1 \cdot (1+\varepsilon) + w_2$$

and $w_1 \cdot y'_1 + w_2 \cdot y'_2 = w_1 + w_2$, hence $y(\varepsilon) \succ y'$.

• However, in the limit $\varepsilon \to 0$, we have $y(0) = \left(0, 1 + \frac{w_1}{w_2}\right)$, with $y(0)_1 = 0$ and thus, $y(0) \prec y'$.

De	ecision Ma	king:	
Τł	he Notion	of Utility	
Fr	From Utility to		
Beyond Interval			
Multi-Agent			
Be	eyond Opt	imization	
Εv	en Furthe	r Beyond	
Ac	cknowledg	ments	
	Ноте	e Page	
	Title	Page	
	44	••	
	•		
	Page	20 of 55	
	rage 2	9 01 99	
	Go	Back	
	Full S	Screen	
	C	ose	
	Ci		
	Q	uit	

29. Towards a Precise Description

- Each alternative is characterized by a tuple of n positive values $y = (y_1, \ldots, y_n)$.
- Thus, the set of all alternatives is the set $(R^+)^n$ of all the tuples of positive numbers.
- For each two alternatives y and y', we want to tell whether

-y is better than y' (we will denote it by $y \succ y'$ or $y' \prec y$),

- or y' is better than $y (y' \succ y)$,
- or y and y' are equally good $(y' \sim y)$.
- Natural requirement: if y is better than y' and y' is better than y'', then y is better than y''.
- The relation \succ must be transitive.

30. Towards a Precise Description (cont-d)

- Reminder: the relation \succ must be transitive.
- Similarly, the relation \sim must be transitive, symmetric, and reflexive $(y \sim y)$, i.e., be an *equivalence relation*.
- An alternative description: a transitive pre-ordering relation $a \succeq b \Leftrightarrow (a \succ b \lor a \sim b)$ s.t. $a \succeq b \lor b \succeq a$.

• Then,
$$a \sim b \Leftrightarrow (a \succeq b) \& (b \succeq a)$$
, and

 $a \succ b \Leftrightarrow (a \succeq b) \,\&\, (b \not\succeq a).$

- Additional requirement:
 - *if* each criterion is better,
 - $-\ then$ the alternative is better as well.
- Formalization: if $y_i > y'_i$ for all i, then $y \succ y'$.

31. Scale Invariance: Motivation

- Fact: quantities y_i describe completely different physical notions, measured in completely different units.
- *Examples:* wind velocities measured in m/s, km/h, mi/h; elevations in m, km, ft.
- Each of these quantities can be described in many different units.
- A priori, we do not know which units match each other.
- Units used for measuring different quantities may not be exactly matched.
- It is reasonable to require that:
 - if we simply change the units in which we measure each of the corresponding n quantities,
 - the relations \succ and \sim between the alternatives $y = (y_1, \ldots, y_n)$ and $y' = (y'_1, \ldots, y'_n)$ do not change.

- 32. Scale Invariance: Towards a Precise Description
 - *Situation:* we replace:
 - \bullet a unit in which we measure a certain quantity q
 - by a new measuring unit which is $\lambda > 0$ times smaller.
 - Result: the numerical values of this quantity increase by a factor of $\lambda: q \to \lambda \cdot q$.
 - *Example:* 1 cm is $\lambda = 100$ times smaller than 1 m, so the length q = 2 becomes $\lambda \cdot q = 2 \cdot 100 = 200$ cm.
 - Then, scale-invariance means that for all $y, y' \in (R^+)^n$ and for all $\lambda_i > 0$, we have

•
$$y = (y_1, \ldots, y_n) \succ y' = (y'_1, \ldots, y'_n)$$
 implies
 $(\lambda_1 \cdot y_1, \ldots, \lambda_n \cdot y_n) \succ (\lambda_1 \cdot y'_1, \ldots, \lambda_n \cdot y'_n),$
• $y = (y_1, \ldots, y_n) \sim y' = (y'_1, \ldots, y'_n)$ implies
 $(\lambda_1 \cdot y_1, \ldots, \lambda_n \cdot y_n) \sim (\lambda_1 \cdot y'_1, \ldots, \lambda_n \cdot y'_n).$

	Kilig	
he Notion of Utility		
rom Utility to		
Seyond Interval		
Aulti-Agent		
Beyond Opti	mization	
even Furthe	r Beyond	
Acknowledgr	nents	
Home	Page	
Title	Page	
••	••	
◀ Page 3	3 of 55	
Page 3 Go I	→ 3 of 55 Back	
Page 3 Go I Full 5	▶ 3 of 55 Back Green	
Page 3 Go I Full 5 Ch	of 55 Back Gereen Dose	

33. Formal Description

- By a total pre-ordering relation on a set Y, we mean
 - a pair of a transitive relation \succ and an equivalence relation \sim for which,
 - for every $y, y' \in Y$, exactly one of the following relations hold: $y \succ y', y' \succ y$, or $y \sim y'$.
- We say that a total pre-ordering is *non-trivial* if there exist y and y' for which $y \succ y'$.
- We say that a total pre-ordering relation on $(R^+)^n$ is:
 - monotonic if $y'_i > y_i$ for all *i* implies $y' \succ y$;
 - continuous if
 - * whenever we have a sequence y^(k) of tuples for which y^(k) ≿ y' for some tuple y', and
 * the sequence y^(k) tends to a limit y,
 * then y ≻ y'.
- Decision Making: ... The Notion of Utility From Utility to Beyond Interval ... Multi-Agent . . . Beyond Optimization Even Further Beyond ... Acknowledgments Home Page Title Page 44 Page 34 of 55 Go Back Full Screen Close Quit

34. Main Result

Theorem. Every non-trivial monotonic scale-inv. continuous total pre-ordering relation on $(R^+)^n$ has the form:

$$y' = (y'_1, \dots, y'_n) \succ y = (y_1, \dots, y_n) \Leftrightarrow \prod_{i=1}^n (y'_i)^{\alpha_i} > \prod_{i=1}^n y_i^{\alpha_i};$$
$$y' = (y'_1, \dots, y'_n) \sim y = (y_1, \dots, y_n) \Leftrightarrow \prod_{i=1}^n (y'_i)^{\alpha_i} = \prod_{i=1}^n y_i^{\alpha_i},$$

i=1

i=1

for some constants $\alpha_i > 0$.

Comment: Vice versa,

- for each set of values $\alpha_1 > 0, \ldots, \alpha_n > 0$,
- the above formulas define a monotonic scale-invariant continuous pre-ordering relation on $(R^+)^n$.

De	ecision Ma	king:		
тΙ	The Notion of Utility			
Fr	From Utility to			
Be	Beyond Interval			
М	ulti-Agent			
Be	eyond Opt	imization		
E١	en Furthe	r Beyond		
Ad	cknowledg	ments		
	Home	e Page		
	Title	Page		
	44	••		
	◀			
	Page 35 of 55			
	Go Back			
	Full S	Screen		
	CI	ose		
	Q	uit		

35. Practical Conclusion

- Situation:
 - we need to select an alternative;
 - each alternative is characterized by characteristics y_1, \ldots, y_n .
- Traditional approach:
 - we assign the weights w_i to different characteristics;
 - we select the alternative with the largest value of $\sum_{i=1}^{n} w_i \cdot y_i$.
- New result: it is better to select an alternative with the largest value of $\prod_{i=1}^{n} y_i^{w_i}$.
- Equivalent reformulation: select an alternative with the largest value of $\sum_{i=1}^{n} w_i \cdot \ln(y_i)$.

36. Multi-Agent Cooperative Decision Making

- How to describe preferences: for each participant P_i , we can determine the utility $u_{ij} \stackrel{\text{def}}{=} u_i(A_j)$ of all A_j .
- *Question:* how to transform these utilities into a reasonable group decision rule?
- *Solution:* was provided by another future Nobelist John Nash.
- Nash's assumptions:
 - symmetry,
 - independence from irrelevant alternatives, and
 - scale invariance under replacing function $u_i(A)$ with an equivalent function $a \cdot u_i(A)$,

37. Nash's Bargaining Solution (cont-d)

• Nash's assumptions (reminder):

– symmetry,

- independence from irrelevant alternatives, and
- scale invariance.
- Nash's result:
 - the only group decision rule satisfying all these assumptions
 - is selecting an alternative A for which the product $\prod_{i=1}^{n} u_i(A)$ is the largest possible.
- Comment. the utility functions must be "scaled" s.t. the "status quo" situation $A^{(0)}$ has utility 0:

$$u_i(A) \to u'_i(A) \stackrel{\text{def}}{=} u_i(A) - u_i(A^{(0)}).$$

- 38. Multi-Agent Decision Making under Interval Uncertainty
 - *Reminder:* if we set utility of status quo to 0, then we select an alternative A that maximizes

$$u(A) = \prod_{i=1}^{n} u_i(A).$$

- Case of interval uncertainty: we only know intervals $[\underline{u}_i(A), \overline{u}_i(A)].$
- First idea: find all A_0 for which $\overline{u}(A_0) \ge \max_A \underline{u}(A)$, where

$$[\underline{u}(A), \overline{u}(A)] \stackrel{\text{def}}{=} \prod_{i=1}^{n} [\underline{u}_i(A), \overline{u}_i(A)].$$

- Second idea: maximize $u^{\text{equiv}}(A) \stackrel{\text{def}}{=} \prod_{i=1}^{n} u_i^{\text{equiv}}(A)$.
- Interesting aspect: when we have a conflict situation (e.g., in security games).

39. Beyond Optimization

- Traditional interval computations:
 - we know the intervals X_1, \ldots, X_n containing x_1, \ldots, x_n ;
 - we know that a quantity z depends on $x = (x_1, \ldots, x_n)$:

$$z = f(x_1, \ldots, x_n);$$

– we want to find the range Z of possible values of z:

$$Z = \left[\min_{x \in X} f(x), \max_{x \in X} f(x)\right]$$

- Control situations:
 - the value z = f(x, u) also depends on the control variables $u = (u_1, \ldots, u_m);$
 - we want to find Z for which, for every $x_i \in X_i$, we can get $z \in Z$ by selecting appropriate $u_j \in U_j$:

$$\forall x \, \exists u \, (z = f(x, u) \in Z).$$

- 40. Reformulation in Logical Terms of Modal Intervals
 - Reminder: we want $\forall x_{\in X} \exists u_{\in U} (f(x, u) \in Z).$
 - There is a logical difference between intervals X and U.
 - The property $f(x, u) \in Z$ must hold
 - for all possible values $x_i \in X_i$, but
 - for some values $u_j \in U_j$.
 - We can thus consider pairs of intervals and quantifiers (modal intervals):
 - each original interval X_i is a pair $\langle X_i, \forall \rangle$, while - controlled interval is a pair $\langle U_i, \exists \rangle$.
 - We can treat the resulting interval Z as the range defined over modal intervals:

$$Z = f(\langle X_1, \forall \rangle, \dots, \langle X_n, \forall \rangle, \langle U_1, \exists \rangle, \dots, \langle U_m, \exists \rangle).$$

41. Even Further Beyond Optimization

- In more complex situations, we need to go beyond control.
- For example, in the presence of an adversary, we want to make a decision x such that:
 - for every possible reaction y of an adversary,
 - we will be able to make a next decision x' (depending on y)
 - so that after every possible next decision y' of an adversary,
 - the resulting state s(x, y, x', y') will be in the desired set:

$$\forall y \, \exists x' \, \forall y' \, (s(x, y, x', y') \in S).$$

• In this case, we arrive at general Shary's classes.

42. Acknowledgments

This work was supported in part:

- by the National Science Foundation grants HRD-0734825, HRD-1242122, and DUE-0926721, and
- by Grant 1 T36 GM078000-01 from the National Institutes of Health.

- 43. Extension of Interval Arithmetic to Probabilistic Case: Successes
 - General solution: parse to elementary operations +, $-, \cdot, 1/x$, max, min.
 - Explicit formulas for arithmetic operations are known:
 - for intervals,

- for p-boxes
$$\mathbf{F}(x) = [\underline{F}(x), \overline{F}(x)],$$

- for intervals + 1st moments $E_i \stackrel{\text{def}}{=} E[x_i]$:

- 44. Extension of Interval Arithmetic to Probabilistic Case: Successes (cont-d)
 - Easy cases: +, -, product of independent x_i .
 - Example of a non-trivial case: multiplication $y = x_1 \cdot x_2$, when we have no info about correlation.
 - Solution for this case: for $p_i \stackrel{\text{def}}{=} (E_i \underline{x}_i) / (\overline{x}_i \underline{x}_i)$, we get:
 - $\underline{E} = \max(p_1 + p_2 1, 0) \cdot \overline{x}_1 \cdot \overline{x}_2 + \min(p_1, 1 p_2) \cdot \overline{x}_1 \cdot \underline{x}_2 + \min(1 p_1, p_2) \cdot \underline{x}_1 \cdot \overline{x}_2 + \max(1 p_1 p_2, 0) \cdot \underline{x}_1 \cdot \underline{x}_2;$
 - $\overline{E} = \min(p_1, p_2) \cdot \overline{x}_1 \cdot \overline{x}_2 + \max(p_1 p_2, 0) \cdot \overline{x}_1 \cdot \underline{x}_2 + \max(p_2 p_1, 0) \cdot \underline{x}_1 \cdot \overline{x}_2 + \min(1 p_1, 1 p_2) \cdot \underline{x}_1 \cdot \underline{x}_2.$

Decision Making:			
The Notion of Utility			
From Utility to			
Beyond Interval			
Multi-Agent			
Beyond Optimization			
Even Further Beyond			
Acknowledgments			
Home Page			
Title Page			
44 >>			
• •			
Page 45 of 55			
Go Back			
Full Screen			
Close			
Quit			

- 45. Extension of Interval Arithmetic to Probabilistic Case: Challenges
 - intervals + 2nd moments:

$$\begin{array}{c|c} \mathbf{x}_1, \mathbf{E}_1, \mathbf{V}_1 \\ \hline \mathbf{x}_2, \mathbf{E}_2, \mathbf{V}_2 \\ \hline \\ \dots \\ \mathbf{x}_n, \mathbf{E}_n, \mathbf{V}_n \end{array} \qquad f \qquad \mathbf{y}, \mathbf{E}, \mathbf{V} \end{array}$$

• moments + p-boxes; e.g.:

De	Decision Making:			
The Notion of Utility				
From Utility to				
Beyond Interval				
Multi-Agent				
Be	eyond Opt	imization		
Eν	en Furthe	r Beyond		
40	cknowledg	ments		
	Ноте	e Page		
	Title	Page		
	••	••		
	••	•		
	Image 4	••• • 16 of 55		
	Image Page Go	••• •• 16 of 55 Back		
	↓ ↓ Page ↓ Go Full :	If of 55 Back Screen		
	Image 4 Go Full :	If of 55 Back Screen ose		
	Image 4 Page 4 Go Full 3 CI	Image: book state Image: book state <td></td>		

46. Case Study: Bioinformatics

- *Practical problem:* find genetic difference between cancer cells and healthy cells.
- *Ideal case:* we directly measure concentration c of the gene in cancer cells and h in healthy cells.
- In reality: difficult to separate.
- Solution: we measure $y_i \approx x_i \cdot c + (1 x_i) \cdot h$, where x_i is the percentage of cancer cells in *i*-th sample.
- Equivalent form: $a \cdot x_i + h \approx y_i$, where $a \stackrel{\text{def}}{=} c h$.

Decision Making:			
The Notion of Utility			
From Utility to			
Beyond Interval			
Multi-Agent			
Beyond Optimization			
Even Further Beyond			
Acknowledgments			
Home Page			
Title Page			
•• >>			
Page 47 of 55			
Go Back			
Full Screen			
Close			
Quit			

47. Case Study: Bioinformatics (cont-d)

• If we know x_i exactly: Least Squares Method $\sum_{i=1}^{n} (a \cdot x_i + h - y_i)^2 \to \min_{a,h}, \text{ hence } a = \frac{C(x,y)}{V(x)} \text{ and } h = E(y) - a \cdot E(x), \text{ where } E(x) = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i,$

$$V(x) = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - E(x))^2,$$

$$C(x,y) = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - E(x)) \cdot (y_i - E(y)).$$

- Interval uncertainty: experts manually count x_i , and only provide interval bounds \mathbf{x}_i , e.g., $x_i \in [0.7, 0.8]$.
- *Problem:* find the range of a and h corresponding to all possible values $x_i \in [\underline{x}_i, \overline{x}_i]$.

- 48. Extension of Interval Arithmetic to Probabilistic Case: General Problem
 - General problem:

- we know intervals
$$\mathbf{x}_1 = [\underline{x}_1, \overline{x}_1], \ldots, \mathbf{x}_n = [\underline{x}_n, \overline{x}_n],$$

- compute the range of
$$E(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$$
, population

variance
$$V = \frac{1}{n} \sum_{i=1}^{n} (x_i - E(x))^2$$
, etc.

- Difficulty: NP-hard even for variance.
- Known:
 - efficient algorithms for \underline{V} ,
 - efficient algorithms for \overline{V} and C(x, y) for reasonable situations.
- Bioinformatics case: find intervals for C(x, y) and for V(x) and divide.

Decision Making:				
The Notion of Utility				
From Utility to				
Beyond Interval				
Multi-Agent				
Beyond Optimization				
Even Further Beyond				
Acknowledgments				
	Home Page			
	Title	Page		
		8-		
	44	••		
	•			
	Page 49 of 55			
	Go Back			
	Full S	Screen		
	CI	ose		
	0	uit		
	Quit			

49. Proof of Symmetry Result: Part 1

• Due to scale-invariance, for every $y_1, \ldots, y_n, y'_1, \ldots, y'_n$, we can take $\lambda_i = \frac{1}{y_i}$ and conclude that

$$(y'_1,\ldots,y'_n)\sim (y_1,\ldots,y_n)\Leftrightarrow \left(\frac{y'_1}{y_1},\ldots,\frac{y'_n}{y_n}\right)\sim (1,\ldots,1).$$

- Thus, to describe the equivalence relation \sim , it is sufficient to describe $\{z = (z_1, \ldots, z_n) : z \sim (1, \ldots, 1)\}.$
- Similarly,

$$(y'_1,\ldots,y'_n) \succ (y_1,\ldots,y_n) \Leftrightarrow \left(\frac{y'_1}{y_1},\ldots,\frac{y'_n}{y_n}\right) \succ (1,\ldots,1).$$

- Thus, to describe the ordering relation \succ , it is sufficient to describe the set $\{z = (z_1, \ldots, z_n) : z \succ (1, \ldots, 1)\}.$
- Similarly, it is also sufficient to describe the set

$$\{z = (z_1, \ldots, z_n) : (1, \ldots, 1) \succ z\}$$

50. Proof of Symmetry Result: Part 2

• To simplify: take logarithms $Y_i = \ln(y_i)$, and sets

$$S_{\sim} = \{ Z : z = (\exp(Z_1), \dots, \exp(Z_n)) \sim (1, \dots, 1) \},\$$

$$S_{\succ} = \{ Z : z = (\exp(Z_1), \dots, \exp(Z_n)) \succ (1, \dots, 1) \};\$$

$$S_{\prec} = \{ Z : (1, \dots, 1) \succ z = (\exp(Z_1), \dots, \exp(Z_n)) \}.$$

- Since the pre-ordering relation is total, for Z, either $Z \in S_{\sim}$ or $Z \in S_{\succ}$ or $Z \in S_{\prec}$.
- Lemma: S_{\sim} is closed under addition:
 - $Z \in S_{\sim}$ means $(\exp(Z_1), \ldots, \exp(Z_n)) \sim (1, \ldots, 1);$
 - due to scale-invariance, we have

 $(\exp(Z_1+Z'_1),\ldots)=(\exp(Z_1)\cdot\exp(Z'_1),\ldots)\sim(\exp(Z'_1),\ldots);$

- also, $Z' \in S_{\sim}$ means $(\exp(Z'_1), \ldots) \sim (1, \ldots, 1);$
- since \sim is transitive,

 $(\exp(Z_1 + Z'_1), \ldots) \sim (1, \ldots)$ so $Z + Z' \in S_{\sim}$.

51. Proof of Symmetry Result: Part 3

- Reminder: the set S_{\sim} is closed under addition;
- Similarly, S_{\prec} and S_{\succ} are closed under addition.
- Conclusion: for every integer q > 0:
 - $\begin{aligned} &-\text{ if } Z \in S_{\sim}, \text{ then } q \cdot Z \in S_{\sim}; \\ &-\text{ if } Z \in S_{\succ}, \text{ then } q \cdot Z \in S_{\succ}; \\ &-\text{ if } Z \in S_{\prec}, \text{ then } q \cdot Z \in S_{\prec}. \end{aligned}$
- Thus, if $Z \in S_{\sim}$ and $q \in N$, then $(1/q) \cdot Z \in S_{\sim}$.
- We can also prove that S_{\sim} is closed under $Z \to -Z$:
 - $Z = (Z_1, ...) \in S_{\sim}$ means $(\exp(Z_1), ...) \sim (1, ...);$
 - by scale invariance, $(1, \ldots) \sim (\exp(-Z_1), \ldots)$, i.e., $-Z \in S_{\sim}$.
- Similarly, $Z \in S_{\succ} \Leftrightarrow -Z \in S_{\prec}$.
- So $Z \in S_{\sim} \Rightarrow (p/q) \cdot Z \in S_{\sim}$; in the limit, $x \cdot Z \in S_{\sim}$.

Decision Making:					
The Notion of Utility					
Fr	From Utility to				
Be	Beyond Interval				
Multi-Agent					
Beyond Optimization					
Even Further Beyond					
Acknowledgments					
	Home Page				
	Title Page				
	••	••			
	•				
	Page 52 of 55				
	Go Back				
	Full Screen				
	Close				
	Quit				

52. Proof of Symmetry Result: Final Part

- Reminder: S_{\sim} is closed under addition and multiplication by a scalar, so it is a linear space.
- Fact: S_{\sim} cannot have full dimension n, since then all alternatives will be equivalent to each other.
- Fact: S_{\sim} cannot have dimension < n 1, since then:
 - we can select an arbitrary $Z \in S_{\prec}$;
 - connect it $w/-Z \in S_{\succ}$ by a path γ that avoids S_{\sim} ;
 - due to closeness, $\exists \gamma(t^*)$ in the limit of S_{\succ} and S_{\prec} ; - thus, $\gamma(t^*) \in S_{\sim}$ - a contradiction.
- Every (n-1)-dim lin. space has the form $\sum_{i=1}^{n} \alpha_i \cdot Y_i = 0$.
- Thus, $Y \in S_{\succ} \Leftrightarrow \sum \alpha_i \cdot Y_i > 0$, and

 $y \succ y' \Leftrightarrow \sum \alpha_i \cdot \ln(y_i/y'_i) > 0 \Leftrightarrow \prod y_i^{\alpha_i} > \prod y_i'^{\alpha_i}.$

Decision Making:					
тΙ	The Notion of Utility				
Fr	om Utility	to			
Be	eyond Inte	rval			
м	Multi-Agent				
Beyond Optimization					
Even Further Beyond					
Acknowledgments					
	Home Page				
	Title Page				
	••	••			
	•				
	Page 53 of 55				
	Go Back				
	Full Screen				
		058			
	Close				

53. References

- S. FERSON, V. KREINOVICH, J. HAJAGOS, W. OBER-KAMPF, L. GINZBURG, *Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty*, Sandia National Laboratories, 2007, Publ. 2007-0939.
- E. GARDEÑES ET AL., Modal intervals, *Reliable Computing*, 7 (2001), pp. 77–111.
- A. JAIMES, C. TWEEDIE, V. KREINOVICH, M. CE-BERIO, Scale-invariant approach to multi-criterion optimization under uncertainty, with applications to optimal sensor placement, in particular, to sensor placement in environmental research, *International Journal* of *Reliability and Safety*, 6 (2012), No. 1–3, pp. 188– 203.

54. References (cont-d)

- R. E. MOORE, R.B. KEARFOTT, M. J. CLOUD, *Introduction to Interval Analysis*, SIAM, Philadelphia, 2009.
- H. T. NGUYEN, V. KREINOVICH, Applications of continuous mathematics to computer science, Kluwer, Dordrecht, 1997.
- H. T. NGUYEN, V. KREINOVICH, B. WU, G. XI-ANG, Computing Statistics under Interval and Fuzzy Uncertainty, Springer Verlag, 2012.
- H. RAIFFA, *Decision Analysis*, McGraw-Hill, Columbus, Ohio, 1997.

Decision Making:					
The Notion of Utility					
Fre	From Utility to				
Be	Beyond Interval				
M	Multi-Agent				
Beyond Optimization					
Even Further Beyond					
Acknowledgments					
	Home Page				
	Title Page				
	44				
	•				
	Page 55 of 55				
	Go Back				
	E!! 4				
	Full S	Screen			
	Full S Cla	Screen			
	Full S Cla	Screen Ose			
	Full S Cla Q	Screen ose uit			