## Use of

Grothendieck's Inequality in Interval Computations: Quadratic Terms are Estimated Accurately (Modulo a Constant Factor)

Olga Kosheleva and Vladik Kreinovich

## Relation to

## Grothendieck's Result

## How to Use This.

Resulting Algorithm

## Acknowledgments

## References

Home Page


University of Texas at El Paso
El Paso, TX 79968, USA
olgak@utep.edu, vladik@utep.edu

- One of the main problem of interval computations:
- Computing the exact range is known to be NP-hard, even for quadratic $f\left(x_{1}, \ldots, x_{n}\right)$.
- So, instead, we compute an enclosure $\boldsymbol{Y} \supseteq \boldsymbol{y}$, with excess width $\operatorname{wid}(\boldsymbol{Y})-\operatorname{wid}(\boldsymbol{y})>0$.
- One of the most widely used methods of efficiently computing $\boldsymbol{Y}$ is the Mean Value (MV) method:

$$
\boldsymbol{Y}=f\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(\boldsymbol{x}_{1} \times \ldots \times \boldsymbol{x}_{n}\right) \cdot\left[-\Delta_{i}, \Delta_{i}\right]
$$

- Mean Value (MV) method (reminder):

$$
\boldsymbol{Y}=f\left(\widetilde{x}_{1}, \ldots, \widetilde{x}_{n}\right)+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(\boldsymbol{x}_{1} \times \ldots \times \boldsymbol{x}_{n}\right) \cdot\left[-\Delta_{i}, \Delta_{i}\right]
$$

Relation to .

Grothendieck's Result

## How to Use This

Resulting Algorithm

## Acknowledgments

References
Home Page mated, e.g., by using straightforward IC:

- parse the expression $f_{, i}$, i.e., represent it as a sequence of elementary arithmetic operations, and
- replace each operation with numbers by the corresponding operation of interval arithmetic.
- The Mean Value method has excess width $O\left(\Delta^{2}\right)$, where

$$
\Delta \stackrel{\text { def }}{=} \max \Delta_{i}
$$

- The Mean Value method has excess width $O\left(\Delta^{2}\right)$
- Can we come up with more accurate enclosures?
- We cannot get too drastic an improvement:
- even for quadratic functions $f\left(x_{1} \ldots, x_{n}\right)$, computing the interval range is NP-hard
- and therefore (unless $\mathrm{P}=\mathrm{NP}$ ), a feasible algorithm with excess width $O\left(\Delta^{2+\varepsilon}\right)$ is impossible.
- What we can do is try to decrease the overestimation of the quadratic term.
- It turns out that such a possibility follows from an inequality proven by A. Grothendieck in 1953.


## Main Idea

Relation to
Grothendieck's Result .
How to Use This.
Resulting Algorithm
Acknowledgments
References
Home Page

Title Page

## 4. Main Idea

- The MV method is based on the 1st order Mean Value Theorem (MVT):
$f(\widetilde{x}+\Delta x)=f(\widetilde{x})+\sum f_{, i}(\widetilde{x}+\eta) \cdot \Delta x_{i}$ for some $\eta_{i} \in\left[-\Delta_{i}, \Delta_{i}\right]$.
- Instead, we propose to use 3rd order MVT:

$$
\begin{aligned}
& f(\widetilde{x}+\Delta x)=f(\widetilde{x})+\sum f_{, i}(\widetilde{x}) \cdot \Delta x_{i}+\frac{1}{2} \cdot \sum f_{, i j}(\widetilde{x}) \cdot \Delta x_{i} \cdot \Delta x_{j}+ \\
& \frac{1}{6} \cdot \sum f_{, i j k}(\widetilde{x}+\eta) \cdot \Delta x_{i} \cdot \Delta x_{j} \cdot \Delta x_{k} .
\end{aligned}
$$

Home Page

Title Page

- Specifically, we propose to add estimates for ranges of linear, quadratic, and cubic terms.
- The range of the cubic term is estimated via straightforward interval comp.; the estimate is $O\left(\Delta^{3}\right)$.
- The range of the linear term $f(\widetilde{x})+\sum f_{, i}(\widetilde{x}) \cdot \Delta x_{i}$ can

Go Back

Full Screen

## Close

## 5. Main Idea (cont-d)

- Reminder: we use the 3rd order MVT:

$$
\begin{aligned}
& f(\widetilde{x}+\Delta x)=f(\widetilde{x})+\sum f_{, i}(\widetilde{x}) \cdot \Delta x_{i}+\frac{1}{2} \cdot \sum f_{, i j}(\widetilde{x}) \cdot \Delta x_{i} \cdot \Delta x_{j}+ \\
& \frac{1}{6} \cdot \sum f_{, i j k}(\widetilde{x}+\eta) \cdot \Delta x_{i} \cdot \Delta x_{j} \cdot \Delta x_{k}
\end{aligned}
$$

- Specifically, we propose to add estimates for ranges of linear, quadratic, and cubic terms.
- The range of the linear term can be computed exactly.
- The range of the cubic term is $O\left(\Delta^{3}\right) \ll O\left(\Delta^{2}\right)$.
- What remains is to estimate the range $[-Q, Q]$ of the quadr. term $\sum_{i, j=1}^{n} a_{i j} \cdot \Delta x_{i} \cdot \Delta x_{j}\left(a_{i j} \stackrel{\text { def }}{=} \frac{1}{2} \cdot f_{, i j}(\widetilde{x})\right)$ on $\left[-\Delta_{1}, \Delta_{1}\right] \times \ldots \times\left[-\Delta_{n}, \Delta_{n}\right]$.

Title Page

## Full Screen

$$
\sum_{i, j=1}^{n} b_{i j} \cdot z_{i} \cdot z_{j}, \text { with } b_{i j} \stackrel{\text { def }}{=} a_{i j} \cdot \Delta_{i} \cdot \Delta_{j}
$$

- Thus: $Q=\max \left\{\sum_{i, j=1}^{n} b_{i j} \cdot z_{i} \cdot z_{j}: z_{i} \in[-1,1]\right\}$.
- Grothendieck's inequality enables us to estimate the maximum $Q^{\prime}$ of a related bilinear function

$$
b(z, t) \stackrel{\text { def }}{=} \sum_{i, j=1}^{n} b_{i j} \cdot z_{i} \cdot t_{j}, \quad z_{i}, t_{j} \in\{-1,1\}
$$

## Full Screen

## Close

## 7. Grothendieck Inequality (cont-d)

 complex than continuous ones.- Observation: the discrete set $\{-1,1\}$ is a unit sphere in 1-D Euclidean space.
- Interesting: for larger dimensions, a unit sphere is connected (hence not discrete).
- Grothendieck's idea: consider $z_{i}$ and $t_{j}$ from the unit sphere in a Hilbert space ( $=\infty$-dim. Euclidean space).

Title Page

- We want to compute:

$$
Q^{\prime}=\max \left\{\sum_{i, j=1}^{n} b_{i j} \cdot z_{i} \cdot t_{j}: z_{i}, t_{j} \in\{-1,1\}\right\}
$$

- We estimate instead:

$$
Q^{\prime \prime} \stackrel{\text { def }}{=} \max \left\{\sum_{i, j=1}^{n} b_{i j} \cdot\left\langle z_{i}, t_{j}\right\rangle: z_{i}, t_{j} \in S\right\}
$$

Acknowledgments

## References

Home Page

Title Page

- Grothendieck's inequality: for some universal constant $K_{G} \in[1,1.782]$, we have $\frac{1}{K_{G}} \cdot Q^{\prime \prime} \leq Q^{\prime} \leq Q^{\prime \prime}$.
- Comment: the part $Q^{\prime} \leq Q^{\prime \prime}$ is trivial, since we can have all $z_{i}$ and $t_{j}$ equal to $\pm e$ for some unit vector $e$.
- Computational result: an ellipsoid method - similar to linear programming one - can feasibly compute $Q^{\prime \prime}$.

Page 9 of 14

Go Back

Full Screen

Close
9. How to Use This Algorithm to Estimate the Range $[-Q, Q]$ of the Quadratic Part

- We want to estimate: $Q=\max \left\{B(z): z_{i} \in[-1,1]\right\}$, where $B(z) \stackrel{\text { def }}{=} b(z, z)$ and $b(z, t)=\sum_{i, j=1}^{n} b_{i j} \cdot z_{i} \cdot t_{j}$.
- We know: $Q^{\prime}=\max \left\{b(z, t): z_{i} \in\{-1,1\}, t_{j} \in\{-1,1\}\right\}$.
- Fact: a bilinear f-n $b(z, t)$ attains its max at endpoints.

Home Page

- Hence: $Q^{\prime}=\max \left\{b(z, t): z_{i} \in[-1,1], t_{j} \in[-1,1]\right\}$.
- Since $b(z, t)=B((z+t) / 2)-B((z-t) / 2)$, we have $Q^{\prime} \leq 2 Q$. Clearly, $Q \leq Q^{\prime}$, hence $Q^{\prime} / 2 \leq Q \leq Q^{\prime}$.
- From $K_{G}^{-1} \cdot Q^{\prime \prime} \leq Q^{\prime} \leq Q^{\prime \prime}$, we can now conclude that

$$
\frac{Q^{\prime \prime}}{2 K_{G}} \leq Q \leq Q^{\prime \prime}
$$

- Hence: by computing $Q^{\prime \prime}$, we can feasibly estimate $Q$ accurately modulo a small constant factor $2 K_{G} \leq 3.6$.

Page 10 of 14

Go Back

Full Screen

Close $\Delta x_{i} \in\left[-\Delta_{i}, \Delta_{i}\right]$, we have: enclosures for $T_{1}, T_{2}$, and $T_{3}$. and get an enclosure of width

- According to the 3rd order Mean Value Theorem, for

$$
\begin{gathered}
f(\widetilde{x}+\Delta x)=T_{1}+T_{2}+T_{3}, \text { where: } \\
T_{1} \stackrel{\text { def }}{=} f(\widetilde{x})+\sum f_{, i}(\widetilde{x}) \cdot \Delta x_{i} ;
\end{gathered}
$$

$T_{2} \stackrel{\text { def }}{=} \sum a_{i j} \cdot \Delta x_{i} \cdot \Delta x_{j}$, where $a_{i j}=\frac{1}{2} \cdot f_{, i j}(\widetilde{x}) ;$ and $T_{3} \stackrel{\text { def }}{=} \frac{1}{6} \cdot \sum f_{, i j k}(\widetilde{x}+\eta) \cdot \Delta x_{i} \cdot \Delta x_{j} \cdot \Delta x_{k}$.

- As an enclosure for the range of $f$, we take the sum of
- For $T_{1}$, we compute the exact range in linear time $O(n)$.
- For $T_{3}$, we use straightforward interval computations


## Relation to .

$$
O\left(\Delta^{3}\right) \ll O\left(\Delta^{2}\right) .
$$

- To estimate the range $[-Q, Q]$ of the quadratic term $T_{2}=\sum a_{i j} \cdot \Delta x_{i} \cdot \Delta x_{j}$, we do the following:
- compute an auxiliary matrix $b_{i j}=a_{i j} \cdot \Delta_{i} \cdot \Delta_{j}$, and
- use the ellipsoid method to compute

$$
Q^{\prime \prime} \stackrel{\text { def }}{=} \max \left\{\sum_{i, j=1}^{n} b_{i j} \cdot\left\langle z_{i}, t_{j}\right\rangle: z_{i}, t_{j} \in S\right\} .
$$

- Then, $\frac{Q^{\prime \prime}}{2 K_{G}} \leq Q \leq Q^{\prime \prime}$, with $2 \leq 2 K_{G} \leq 3.6$.
- Why this is better that the Mean Value method:
- we still get excess width $O\left(\Delta^{2}\right)$, but
- this time, we overestimate the quadratic terms by no more than a known constant factor.

This work was supported in part:

- by the National Science Foundation grants HRD-0734825, HRD-1242122, and DUE-0926721, and
- by Grant 1 T36 GM078000-01 from the National Institutes of Health.

Go Back

Full Screen

## Close

Quit

Grothendieck's inequality and related algorithms:

- N. Alon, A. Naor, Approximating the cut-norm via Grothendieck's inequality, SIAM J. Comp., 35 (2006), No. 4, pp. 787-803.
- A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Boll. Soc. Mat. SãoPaulo, 8 (1953), pp. 1-79.
- G. Pisier, Grothendieck's theorem, past and present, Bulletin of the American Mathematical Society, 49 (2012), No. 2, pp. 237-323.
Using 3rd order Mean Value Theorem:
- O. Kosheleva, How to explain usefulness of different results when teaching calculus: example of the Mean Value Theorem, J. Uncertain Systems, 7 (2013), to appear.

Home Page

Title Page

Relation to
Grothendieck's Result
How to Use This.
Resulting Algorithm
Acknowledgments
References

4

## 4

Page 14 of 14

Close

Quit

