

Computing Enclosures of Overdetermined Interval Linear Systems

Jaroslav Horáček, Milan Hladík Computing Enclosures of OILS (SCAN 2012)

イロン イ理 とくほう くほう

Jaroslav Horáček

horacek@kam.mff.cuni.cz

[Charles University in Prague, Czech Republic] [Department of Applied Mathematics]

supervisor: Mgr. Milan Hladík, Ph.D.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

- Basic notation
- An interval linear system and its solution
- Methods for solving IOLS
- Comparison of methods
- Toolbox LIME 1.0
- Conclusions and future

< 🗇 🕨

→ Ξ → < Ξ →</p>

- A, b indicate an interval matrix and vector respectively
- A, b indicate a point real matrix and vector respectively
- $A = [\underline{A}, \overline{A}]$, where \underline{A} is called *lower bound* and \overline{A} is called *upper bound*
- Also $\mathbf{A} = \langle A_c, A_{\Delta} \rangle$, where A_c is *midpoint matrix* and A_{Δ} is *radius matrix*
- It holds $A_c = (\underline{A} + \overline{A})/2$
- It holds $A_{\Delta} = (\overline{A} \underline{A})/2$

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Ax = b, where

- $\mathbf{A} \in \mathbb{IR}^{m \times n}$ (interval matrix)
- $\boldsymbol{b} \in \mathbb{IR}^{m \times 1}$ (interval vector)
- IR is the set of all real closed intervals

・ 同 ト ・ ヨ ト ・ ヨ ト

Solution of an interval linear system

Definition

The solution set of Ax = b is

$$\Sigma = \{ x \mid Ax = b \text{ for some } A \in \mathbf{A}, b \in \mathbf{b} \}.$$

- Collection of all solutions of all point-real instances of an interval system.
- Not the least squares approach!
- If no instance has solution, we call the whole interval system - unsolvable

ヨト イヨト

Solution of interval linear system

- It is a polyhedral set
- Not necessarily convex
- But convex in each orthant

Description of a solution

- Difficult to describe
- \Rightarrow one possibility a tight n-dimensional box *(interval hull)*
- NP-hard (even approximation)
- → We are looking for a box as narrow as possible containing the hull *(interval enclosure)*

Overdetermined interval linear system

Definition

Ax = b, where

•
$$\boldsymbol{A} \in \mathbb{IR}^{m \times n}$$
, where $m > n$

•
$$\boldsymbol{b} \in \mathbb{IR}^{m \times 1}$$

IR is the set of all real closed intervals

"More equations than variables."

More difficult than a square system.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Methods for solving OILS

- Gaussian elimination (GE)
- Iterative methods Jacobi, Gauss-Seidel
- Supersquare methods
- Subsquare methods
- Rohn method
- Linear programming

A ▶

Gaussian elimination (GE)

- Hansen 2006
- Adapted Gaussian elimination we eliminate to the shape

通 とくほ とくほ とう

æ

Gaussian elimination (GE)

- We have m n + 1 equations in the shape $x_n = [a_i, b_i]$
- We provide intersection
- Empty intersection means no solution
- Infinite intersection means infinite solution or overestimation
- Then the backward substitution
- O.K. only for small systems *n* ~ 4
- For larger systems we get great overestimation

・ 同 ト ・ ヨ ト ・ ヨ ト …

Grow by GE

x_1	0.1479	227.6698
x_2	15.2091	172.5929
x_3	11.1031	68.4653
x_4	9.7809	64.1056
x_5	-8.8168	27.2234
x_6	25.8164	25.8398
x_7	-19.0444	30.4596
x_8	-22.0799	11.0313
x_9	1.9649	12.1172
<i>x</i> ₁₀	- 1 9.1817	11.6841
x_{11}	-20.9670	1.9153
x_{12}	-4.6988	3.5407
x_{13}	3.1223	4.3894

(Variable|Midpoint|Radius) for a random system 15 \times 13 with random radii $\leq 10^{-3}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへぐ

Gaussian elimination (GE) - preconditioning

- For square systems typical preconditioning is *A_c* the midpoint matrix
- We tested the preconditioning proposed by Hansen

$$B = \left[egin{array}{cc} A_1^c & 0 \ A_2^c & I \end{array}
ight].$$

- Preconditioning widens the solution ⇒ unsolvable system becomes solvable
- When we want to test unsolvability of a system we can not use preconditioning (works only for n ~ 10)

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- For square systems Jacobi, Gauss-Seidel, Krawczyk, etc. cannot be used for OILS
- Without preconditioning these method often have no sense when computing with intervals

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Iterative methods - Solutions

• (1) After Hansen preconditioning we get almost this shape

- We can use only the upper $n \times n$ subsquare
- Solution enclosure is still rigorous but with loss of information
- For matrices with radii close to 10⁻² preconditioned matrix often contains zeros on diagonal

- (2) do some simple tricks (later)
- (3) Rohn method (later)
- (4) Transform our system to the new square one

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

(4) transform the system to a new system

э

A ►

Supersquares method

- Classical $\mathbf{A}^T \mathbf{A} x = \mathbf{A}^T \mathbf{b}$ does not work!
- Even $(C\mathbf{A})^T (C\mathbf{A}) x = (C\mathbf{A})^T \mathbf{b}$ does not work for some preconditioner C
- But what works is

$$\left(\begin{array}{cc} I & \boldsymbol{A} \\ \boldsymbol{A}^T & \boldsymbol{0} \end{array}\right) \left(\begin{array}{c} \boldsymbol{y} \\ \boldsymbol{x} \end{array}\right) = \left(\begin{array}{c} \boldsymbol{b} \\ \boldsymbol{0} \end{array}\right),$$

- Formula resembles the least squares, but it is actually not
- However the least squares solution is contained

・ 戸 ・ ・ 目 ・ ・ 日 ・

- Now we can apply our favourite iterative method
- $\bullet\,$ Problem for system 50 \times 3 we have to solve a system 53 $\times\,$ 53
- This approach always returns solution!
- Implemented e.g. in Intlab method verifylss()
- It is actually a parametric system

< 回 > < 回 > < 回 > .

- Simple tricks to enable the use of the square iterative methods
- (1) solve some (random?) square subsystems of the overdetermined one and intersect the solutions
- If we check all of them we get something really close to the interval hull and for small systems it is cheaper than linear programming
- Also this way allows to detect unsolvability very quickly after few trials (random system 200×170 with $r \le 10^{-2} \sim 5$ steps; with $r \le 10^{-4} \sim 2$ steps)

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Subsquares methods - times

matrix	time (sec)
5 × 3	0.1
9 imes 5	0.6
11 imes 6	2.15
13 imes 7	7.67
15 imes13	0.62
15 imes 7	28.16
23 imes 19	42.43
40 imes 39	0.30
40 imes 38	4.47

Table: Subsquares - times when evaluating all subsystems

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

- (2) Use some distinct overlaping subsystems covering the whole OILS and apply some iterative method to them (Jacobi)
- Intersect all the partial solutions after each iteration this works quite well
- The more systems we choose, the better
- The problem we currently work on is which and how many subsystems to choose

◆□ > ◆□ > ◆豆 > ◆豆 > →

Rohn theorem

Let Ax = b be an IOLS with a solution *S*. Let *R* be arbitrary real $n \times m$ matrix and let x_0 and d > 0 are arbitrary *n*-dimensional real vector such that

Gd + g < d,

where

$$\mathcal{G} = |I - \mathcal{R}\mathcal{A}_c| + |\mathcal{R}|\mathcal{A}_\Delta|$$

and

$$g=|R(A_cx_0-b_c)|+|R|(A_{\Delta}|x_0|+b_{\Delta}).$$

Then

$$S\subseteq [x_0-d,x_0+d].$$

ヘロト 人間 ト ヘヨト ヘヨト

æ

Iterative computing of d

•
$$x_0 \approx Rb_c$$
, $R \approx (A_c^T A_c)^{-1} A_c^T$

- We does not have to use A_c we can use $A \in \mathbf{A} \Rightarrow$ iteration
- This method works well
- However sometimes we cannot find *d* when some radii are ≤ 0.1

個人 くほん くほん

Oettli-Prager theorem

Vector $x \in \mathbb{R}^n$ is a (weak) solution of an interval system if and only if

$$|A_c x - b_c| \leq A_\Delta |x| + b_\Delta.$$

- First absolute value can be rewritten
- Second one with the knowledge of current orthant we are at
- Then we have a system of point real inequalities ⇒ Linear programming - we get interval hull
- Problem we have to solve 2ⁿ × (2n) linear programming problems (a system 15 × 9 ~ 28 min)
- Solution we can solve with some worse method and then compute LP only in the orthant returned

同トメヨトメヨト

Linear programming - times (random systems)

matrix	time	
5×3	6 sec	
9 imes 5	43 sec	
13 imes 7	5 min	
15 imes 9	28 min	

Table: When searching all orthants

matrix	time		
5 × 3	1 sec		
15 imes10	3.5 sec		
25 imes 21	13 sec		
35×23	19 sec		
45 imes 31	43 sec		
55 imes35	1 min		
73 imes 55	9 min		

Table: When searching orthants according to a sign vector – supersquares

・ 同 ト ・ ヨ ト ・ ヨ ト

Comparison of methods

Jaroslav Horáček, Milan Hladík Computing Enclosures of OILS (SCAN 2012)

▶★国▶

æ

Comparison of methods - widths of enclosures

Tested widths according to verifylss (Intlab)

•
$$\frac{1}{n} \sum_{i=1}^{n} \frac{\mathbf{w}(x_i)}{\mathbf{w}(x_i^{intlab})}$$

matrix \method	GSpre	Rohn	Intlab	Subsq	GE
35 imes 23	11.1655	1.0177	1.000	1.4045	11.1664
50 imes 35	11.8722	1.0108	1.000	1.5445	11.8736
100 imes 87	13.513	1.0014	1.000	1.4222	13.515
200 imes 170	16.3620	0.999	1.000	1.8641	16.3639

Table: Width of enclosures for systems rad < 10^{-4} , $\epsilon = 10^{-5}$

Comparison of methods - times of computation

• Tested using Matlab functions - tic, toc

matrix \ <i>method</i>	GSpre	GE	Rohn	Subsq	Intlab
5 imes 3	0.022	0.0239	0.00096	0.0217	0.0046
15 imes 13	0.0731	0.1365	0.0018	0.0666	0.005
35 imes 23	0.1257	0.5657	0.0026	0.1625	0.0065
50 imes 35	0.1927	1.1618	0.0048	0.2513	0.0103
100 imes 87	0.4961	4.9578	0.034	1.0431	0.0386
200 imes 170	1.3616	19.7027	0.1678	6.3006	0.2428

Table: Times of computations for systems rad $< 10^{-4}$, $\epsilon = 10^{-5}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Library of Interval Methods (LIME)

- Matlab / Intlab / Versoft
- Toolbox LIME 1.0
- Documentation (html + sourcecode)
- Free for non-comercial use

- Solving of overdetermined interval linear systems is sometimes needed
- Information about unsolvability is sometimes needed
- Still much can be done in this area derandomization, theoretical links, new effective methods

(雪) (ヨ) (ヨ)

Overdetermined interval linear systems

Thank you very much for your attention.

< 回 > < 回 > < 回 > .