Verified Computation of Hermitian (Symmetric) Solutions to Continuous-Time Algebraic Riccati Matrix Equations

Behnam Hashemi

Department of Mathematics Shiraz University of Technology

SCAN 2012, Novosibirsk

A (1) > A (1) > A

Outline

Motivation

- The Riccati Equation and Some Basic Tools
- Our Main Problem
- Previous Works

Our Results/Contribution

- Main Results
- Algorithms
- Numerical Results

The Riccati Equation and Some Basic Tools Our Main Problem Previous Works

Outline

• The Riccati Equation and Some Basic Tools

- Our Main Problem
- Previous Works

2 Our Results/Contribution

- Main Results
- Algorithms
- Numerical Results

・ 同 ト ・ ヨ ト ・ ヨ ト

The Riccati Equation and Some Basic Tools Our Main Problem Previous Works

The Riccati Equation

The matrix equation

$$R(X) := A^*X + XA - XSX + Q = 0, \qquad (1)$$

is called the continuous-time algebraic Riccati equation (CARE), where

$$A \in \mathbb{C}^{n \times n},$$

$$S = S^* \in \mathbb{C}^{n \times n},$$

$$Q = Q^* \in \mathbb{C}^{n \times n},$$

are given and $X \in \mathbb{C}^{n \times n}$ is the unknown solution.

The Riccati Equation and Some Basic Tools Our Main Problem Previous Works

The Closed Loop Matrix

The matrix A - SX is called the closed loop matrix associated with the CARE (1).

The Riccati Equation and Some Basic Tools Our Main Problem Previous Works

Stabilizing Solution of the CARE

- Several applications require a Hermitian positive semidefinite stabilizing solution of the CARE (1).
- A Hermitian solution X of (1) is a stabilizing solution if the closed loop matrix A SX is stable, i.e., the spectrum of A SX lies in the closed left half-plane.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Riccati Equation and Some Basic Tools Our Main Problem Previous Works

Important Formula

vec-of-three-factors: $vec(ABC) = (C^T \otimes A)vec(B)$.

Science in the second se

The Riccati Equation and Some Basic Tools Our Main Problem Previous Works

Important Formula

notation for simplicity: "lowercase := vec(uppercase)"

 $b := \operatorname{vec}(B).$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

ъ

The Riccati Equation and Some Basic Tools Our Main Problem Previous Works

Important Formula

so we write:

$$\mathsf{vec}(\mathsf{ABC}) = (\mathsf{C}^\mathsf{T} \otimes \mathsf{A}) \mathsf{b}$$

・ロット (雪) () () () ()

æ

Fréchet Derivative of the function R(X)

The Fréchet derivative of R at X in the direction H is

$$R'(X) \cdot H = H(A - SX) + (A - SX)^*H,$$

which means that

$$egin{array}{rl} r'(x) &=& I\otimes (A-SX)^*+(A-SX)^T\otimes I\ &\in& \mathbb{C}^{n^2 imes n^2}. \end{array}$$

イロト イポト イヨト イヨト

The Riccati Equation and Some Basic Tools Our Main Problem Previous Works

Outline

- The Riccati Equation and Some Basic Tools
- Our Main Problem
- Previous Works
- 2 Our Results/Contribution
 - Main Results
 - Algorithms
 - Numerical Results

< 回 > < 三 > < 三

Enclosing Solutions to Riccati Matrix Equations

 Develop an efficient technique based on interval arithmetic which provides guaranteed error bounds for solutions of the continuous-time algebraic Riccati equation (1)

Motivation The Ri Our Results/Contribution Our Ma Summary Previou

The Riccati Equation and Some Basic Too Our Main Problem Previous Works

Outline

- The Riccati Equation and Some Basic Tools
- Our Main Problem
- Previous Works

2 Our Results/Contribution

- Main Results
- Algorithms
- Numerical Results

・ 同 ト ・ ヨ ト ・ ヨ ト

The Riccati Equation and Some Basic Tools Our Main Problem Previous Works

An Interval Newton Method Luther, Otten, Traczinski (1998) AND Luther, Otten (1999)

- The Fréchet derivative of *R* at *X* is used to derive an interval Sylvester matrix equation of the form *CX* + *XD* = *F*,
- Transform the interval Sylvester equation into the large interval linear system (*I* ⊗ *C* + *D*^T ⊗ *I*)*x* = *f* with *x* := vec(*X*) and *f* := vec(*F*) and solve it.

イロト イポト イヨト イヨト

The Riccati Equation and Some Basic Tools Our Main Problem Previous Works

An Interval Newton Method Luther, Otten, Traczinski (1998) AND Luther, Otten (1999)

- The Fréchet derivative of *R* at *X* is used to derive an interval Sylvester matrix equation of the form *CX* + *XD* = *F*,
- Transform the interval Sylvester equation into the large interval linear system (*I* ⊗ *C* + *D*^T ⊗ *I*)*x* = *f* with *x* := vec(*X*) and *f* := vec(*F*) and solve it.

イロト イポト イヨト イヨト

The Riccati Equation and Some Basic Tools Our Main Problem Previous Works

An Interval Newton Method Luther, Otten, Traczinski (1998) AND Luther, Otten (1999)

- The Fréchet derivative of *R* at *X* is used to derive an interval Sylvester matrix equation of the form *CX* + *XD* = *F*,
- Transform the interval Sylvester equation into the large interval linear system (*I* ⊗ *C* + *D*^T ⊗ *I*)*x* = *f* with *x* := vec(*X*) and *f* := vec(*F*) and solve it.

イロト イポト イヨト イヨト

Motivation Our Results/Contribution Summary The Riccati Equation and Some Basic Tools Our Main Problem Previous Works Main Issue: Computational Complexity

The number of arithmetic operations needed to implement this interval Newton technique is roughly $O(n^6)$!

because the coefficient matrix of the resulting interval linear system is $n^2 \times n^2$!

The number of arithmetic operations needed to implement this interval Newton technique is roughly $O(n^6)$! because the coefficient matrix of the resulting interval linear system is $n^2 \times n^2$!

イロト イポト イヨト イヨト

 Motivation Our Results/Contribution Summary
 The Riccati Equation and Some Basic Tools Our Main Problem Previous Works

 Classical Krawczyk approach

Yano, Koga (2007) AND Yano, Koga (2008)

$$\boldsymbol{k}(\check{\boldsymbol{x}},\boldsymbol{x}) := \check{\boldsymbol{x}} - \boldsymbol{R} \cdot \boldsymbol{r}(\check{\boldsymbol{x}}) + \left(\boldsymbol{I}_{n^2} - \boldsymbol{R} \cdot \boldsymbol{r}'(\boldsymbol{x})\right)(\boldsymbol{x} - \check{\boldsymbol{x}}),$$

where

$$r: \mathbb{C}^{n^2} \to \mathbb{C}^{n^2}, \ x \mapsto r(\check{x}) := \operatorname{vec}(R(\check{X})),$$

$$r'(x) = \left(I \otimes (A - SX)^* + (A - SX)^T \otimes I\right) \in \mathbb{C}^{n^2 \times n^2}.$$

ヘロト ヘワト ヘビト ヘビト

ъ

 Motivation Our Results/Contribution Summary
 The Riccati Equation and Some Basic Tools Our Main Problem Previous Works

 Classical Krawczyk approach

Yano, Koga (2007) AND Yano, Koga (2008)

$$\boldsymbol{k}(\check{\boldsymbol{x}},\boldsymbol{x}) := \check{\boldsymbol{x}} - \boldsymbol{R} \cdot \boldsymbol{r}(\check{\boldsymbol{x}}) + \left(\boldsymbol{I}_{n^2} - \boldsymbol{R} \cdot \boldsymbol{r}'(\boldsymbol{x})\right)(\boldsymbol{x} - \check{\boldsymbol{x}}),$$

where

$$r: \mathbb{C}^{n^2} o \mathbb{C}^{n^2}, \ x \mapsto r(\check{x}) := \operatorname{vec}(R(\check{X})),$$

 $r'(x) = \left(I \otimes (A - SX)^* + (A - SX)^T \otimes I\right) \in \mathbb{C}^{n^2 \times n^2}.$

イロト イポト イヨト イヨト

ъ

Main Issue Again: Computational Complexity

- Standard choice is to take R ∈ C^{n²×n²} as an approximate inverse of mid r'(x).
- *R* is needed explicitly. I R r'(x) is also needed explicitly.
- Cost is $\mathcal{O}(n^5)$!
- The number of arithmetic operations needed to implement the classical Krawczyk approach is at-least $O(n^5)$!

イロト イポト イヨト イヨト

Main Issue Again: Computational Complexity

- Standard choice is to take R ∈ C^{n²×n²} as an approximate inverse of mid r'(x).
- *R* is needed explicitly. I R r'(x) is also needed explicitly.
- Cost is $\mathcal{O}(n^5)$!
- The number of arithmetic operations needed to implement the classical Krawczyk approach is at-least O(n⁵) !

Main Issue Again: Computational Complexity

- Standard choice is to take R ∈ C^{n²×n²} as an approximate inverse of mid r'(x).
- *R* is needed explicitly. I R r'(x) is also needed explicitly.
- Cost is *O*(*n*⁵) !
- The number of arithmetic operations needed to implement the classical Krawczyk approach is at-least O(n⁵) !

Main Issue Again: Computational Complexity

- Standard choice is to take R ∈ C^{n²×n²} as an approximate inverse of mid r'(x).
- *R* is needed explicitly. I R r'(x) is also needed explicitly.
- Cost is *O*(*n*⁵) !
- The number of arithmetic operations needed to implement the classical Krawczyk approach is at-least O(n⁵) !

Challenge

Reduce the cost to cubic !

The big question:

How to compute *R* and $I_{n^2} - R \cdot r'(\mathbf{x})$ more cheaply ?

ъ

Challenge

Reduce the cost to cubic ! The big question: How to compute *R* and $I_{n^2} - R \cdot r'(\mathbf{x})$ more cheaply ?

イロト イポト イヨト イヨト

æ

Main Results Algorithms Numerical Results

Outline

Motivation

- The Riccati Equation and Some Basic Tools
- Our Main Problem
- Previous Works

Our Results/Contribution

- Main Results
- Algorithms
- Numerical Results

(< ∃) < ∃)</p>

< 🗇 🕨

Motivation Main Results Our Results/Contribution Algorithms Summary Numerical Re

Essence of Krawczyk-Type Iterations

Theorem (Rump 1983, AND Frommer, H. 2009)

Assume that $f : D \subset \mathbb{C}^N \to \mathbb{C}^N$ is continuous in D. Let $\check{x} \in D$ and $\mathbf{z} \in \mathbb{I}\mathbb{C}^N$ be such that $\check{x} + \mathbf{z} \subseteq D$. Moreover, assume that $\mathcal{P} \subset \mathbb{C}^{N \times N}$ is a set of matrices containing all slopes $P(\check{x}, y)$ for $y \in \check{x} + \mathbf{z} =: \mathbf{x}$. Finally, let $R \in \mathbb{C}^{N \times N}$. Denote $\mathcal{K}_f(\check{x}, R, \mathbf{z}, \mathcal{P})$ the set

$$\mathcal{K}_{f}(\check{x}, \boldsymbol{R}, \boldsymbol{z}, \mathcal{P}) := \{-Rf(\check{x}) + (I - RP)z : P \in \mathcal{P}, z \in \boldsymbol{z}\}.$$
 (2)

Then, if $\mathcal{K}_f(\check{x}, R, \mathbf{z}, \mathcal{P}) \subseteq \operatorname{int} \mathbf{z}$, the function f has a zero x^* in the set $\check{x} + \mathcal{K}_f(\check{x}, R, \mathbf{z}, \mathcal{P}) \subseteq \mathbf{x}$. Moreover, if \mathcal{P} also contains all slope matrices P(y, x) for the function f and for $x, y \in \mathbf{x}$, then this zero is unique in \mathbf{x} .

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Main Results Algorithms Numerical Results

Slopes and Fréchet derivative of the function R(X)

Theorem

Assume that **X** is an Hermitian interval matrix and $X, Y \in \mathbf{X}$. Then, the interval arithmetic evaluation of the Fréchet derivative of R contains all its slopes.

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation Ma Our Results/Contribution Alg Summary Nu

Main Results Algorithms Numerical Results

Slopes and Fréchet derivative of the function R(X)

Proof.

Suppose that $X, Y \in \mathbf{X}$.

$$\begin{aligned} R(Y) - R(X) &= A^*Y + YA - YSY - A^*X - XA + XSX \\ &= A^*(Y - X) + (Y - X)A \\ &- \frac{1}{2} \left((Y + X)S(Y - X) + (Y - X)S(Y + X) \right), \end{aligned}$$

So,

$$r(y) - r(x) = [I \otimes (A^* - \frac{1}{2}(Y + X)S) + (A^T - \frac{1}{2}(S(Y + X))^T) \otimes I](y - x).$$

Main Results Algorithms Numerical Results

Slopes and Fréchet derivative of the function R(X)

Proof.

This means that

$$P(y,x) = I \otimes (A^* - \frac{1}{2}(Y+X)S) + (A^T - \frac{1}{2}(S(Y+X))^T) \otimes I.$$

Since $X, Y \in \mathbf{X}$, by the enclosure property of interval arithmetic we have

$$P(y,x) \in I \otimes (A^* - XS) + (A - SX)^T \otimes I.$$

Since **X** is Hermitian, $X^*, Y^* \in \mathbf{X}$. Moreover, $S^* = S$. So, $A^* - \mathbf{X}S = (A - S\mathbf{X})^*$ and therefore

$$P(y,x) \in [I \otimes (A - SX)^* + (A - SX)^T \otimes I]$$

interval arithmetic evaluation of R'(X)

Behnam Hashemi

Enclosures for solutions to Riccati equations

Motivation Main Results Our Results/Contribution Algorithms Summary Numerical Re

Slopes and Fréchet derivative of the function R(X)

Proof.

This means that

$$P(y,x) = I \otimes (A^* - \frac{1}{2}(Y+X)S) + (A^T - \frac{1}{2}(S(Y+X))^T) \otimes I.$$

Since $X, Y \in \mathbf{X}$, by the enclosure property of interval arithmetic we have

$$P(y, x) \in I \otimes (A^* - XS) + (A - SX)^T \otimes I.$$

Since **X** is Hermitian, $X^*, Y^* \in \mathbf{X}$. Moreover, $S^* = S$. So, $A^* - \mathbf{X}S = (A - S\mathbf{X})^*$ and therefore

$$P(y,x) \in [I \otimes (A - SX)^* + (A - SX)^T \otimes I]$$

interval arithmetic evaluation of R'(X)

Behnam Hashemi

Enclosures for solutions to Riccati equations

Motivation Main Results Our Results/Contribution Algorithms Summary Numerical Re

Slopes and Fréchet derivative of the function R(X)

Proof.

This means that

$$P(y,x) = I \otimes (A^* - \frac{1}{2}(Y+X)S) + (A^T - \frac{1}{2}(S(Y+X))^T) \otimes I.$$

Since $X, Y \in \mathbf{X}$, by the enclosure property of interval arithmetic we have

$$P(y,x) \in I \otimes (A^* - XS) + (A - SX)^T \otimes I.$$

Since **X** is Hermitian, X^* , $Y^* \in \mathbf{X}$. Moreover, $S^* = S$. So, $A^* - \mathbf{X}S = (A - S\mathbf{X})^*$ and therefore

$$P(y,x) \in \underbrace{I \otimes (A - SX)^* + (A - SX)^T \otimes I}_{I \otimes I}$$

interval arithmetic evaluation of R'(X)

Main Results Algorithms Numerical Results

So, What Do We Need ?

Step 1: An as thin as possible enclosure for

$$\mathcal{K}_{f}(\check{x}, \boldsymbol{R}, \boldsymbol{z}, \mathcal{P}) := \{-\boldsymbol{R} f(\check{x}) + (\boldsymbol{I} - \boldsymbol{R}\boldsymbol{P})\boldsymbol{z} : \boldsymbol{P} \in \mathcal{P}, \boldsymbol{z} \in \boldsymbol{z}\}.$$

イロト イポト イヨト イヨト

ъ

Main Results Algorithms Numerical Results

So, What Do We Need ?

Step 1: An as thin as possible enclosure for

$$\mathcal{K}_{f}(\check{x}, R, \boldsymbol{z}, \mathcal{P}) := \{ \underbrace{-R \ f(\check{x})}_{\mathsf{FIRST \ TERM}} + \underbrace{(I - RP)z : P \in \mathcal{P}, z \in \boldsymbol{z}}_{\mathsf{SECOND \ TERM}} \}.$$

Step 2: Check the relation $\mathcal{K}_f(\check{x}, R, z, \mathcal{P}) \subseteq \operatorname{int} z$.

イロト 不得 とくほ とくほとう

25/41

ъ

Main Results Algorithms Numerical Results

So, What Do We Need ?

Step 1: An as thin as possible enclosure for

$$\mathcal{K}_{f}(\check{x}, R, \boldsymbol{z}, \mathcal{P}) := \{ \underbrace{-R f(\check{x})}_{\mathsf{FIRST TERM}} + \underbrace{(I - RP)z : P \in \mathcal{P}, z \in \boldsymbol{z}}_{\mathsf{SECOND TERM}} \}.$$

Step 2: Check the relation $\mathcal{K}_f(\check{x}, R, \boldsymbol{z}, \mathcal{P}) \subseteq \text{int } \boldsymbol{z}$.

イロト イポト イヨト イヨト

Motivation Main Our Results/Contribution Algo Summary Num

Main Results Algorithms Numerical Results

The Key: Spectral Decomposition of the Closed Loop Matrix

Let

 $A - SX = V \wedge W$ with

 $V, \Lambda, W \in \mathbb{C}^{n \times n},$ VW = I, $\Lambda = Diag(\lambda_1, \lambda_2, \cdots, \lambda_n)$ diagonal.

ヘロト 人間 ト ヘヨト ヘヨト

э.

Motivation Main Results Our Results/Contribution Algorithms Summary Numerical Results

Consequence of the Spectral Decomposition

Recall:
$$r'(x) = I \otimes (A - SX)^* + (A - SX)^T \otimes I$$
.

$$r'(x) = (V^{-T} \otimes W^*) \cdot (I \otimes [W(A - SX)W^{-1}]^* + [V^{-1}(A - SX)V]^T \otimes I) \cdot (V^T \otimes W^{-*})$$

Another basic formula: $(A \otimes B) \cdot (C \otimes D) = (A \cdot C \otimes B \cdot D).$

くロト (過) (目) (日)

э

Motivation Main Results
Our Results/Contribution
Summary Numerical Results

Consequence of the Spectral Decomposition

Recall:
$$r'(x) = I \otimes (A - SX)^* + (A - SX)^T \otimes I$$
.
 $r'(x) = (V^{-T} \otimes W^*) \cdot (I \otimes [W(A - SX)W^{-1}]^* + [V^{-1}(A - SX)V]^T \otimes I) \cdot (V^T \otimes W^{-*}),$

Another basic formula: $(A \otimes B) \cdot (C \otimes D) = (A \cdot C \otimes B \cdot D).$

イロン 不得 とくほ とくほとう

ъ

Motivation Main Results Our Results/Contribution Algorithms Summary Numerical Results

Consequence of the Spectral Decomposition

Recall:
$$r'(x) = I \otimes (A - SX)^* + (A - SX)^T \otimes I$$
.
 $r'(x) = (V^{-T} \otimes W^*) \cdot (I \otimes [W(A - SX)W^{-1}]^* + [V^{-1}(A - SX)V]^T \otimes I) \cdot (V^T \otimes W^{-*}),$

Another basic formula: $(A \otimes B) \cdot (C \otimes D) = (A \cdot C \otimes B \cdot D)$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Motivation Main Results Our Results/Contribution Summary

Consequence of the Spectral Decomposition

$$r'(x) = (V^{-T} \otimes W^*) \cdot \left(I \otimes [\underbrace{W(A - SX)W^{-1}}_{\simeq \Lambda}]^* + [\underbrace{V^{-1}(A - SX)V}_{\simeq \Lambda}]^T \otimes I \right) \cdot (V^T \otimes W^{-*}),$$

・ロット (雪) () () () ()

3

Motivation Our Results/Contribution Summary Numerical Re

Consequence of the Spectral Decomposition: An Approximate Inverse for mid $r'(\mathbf{x})$

$$\boldsymbol{R} = (\boldsymbol{V}^{-T} \otimes \boldsymbol{W}^*) \cdot \left(\boldsymbol{I} \otimes \boldsymbol{\Lambda}^* + \boldsymbol{\Lambda}^T \otimes \boldsymbol{I}\right)^{-1} \cdot (\boldsymbol{V}^T \otimes \boldsymbol{W}^{-*}),$$

→ E > < E >

29/41

< 🗇 🕨

Consequence of the Spectral Decomposition: An Approximate Inverse for mid $r'(\mathbf{x})$

$$R = (V^{-T} \otimes W^*) \cdot \left(\underbrace{I \otimes \Lambda^* + \Lambda^T \otimes I}_{-1}\right)^{-1} \cdot (V^T \otimes W^{-*}),$$

Extremely important: $\Delta := I \otimes \Lambda^* + \Lambda^T \otimes I \in \mathbb{C}^{n^2 \times n^2} \text{ is diagonal.}$

くロ とくぼ とくほ とく ほうし

Motivation Main Results Our Results/Contribution Algorithms Summary Numerical Re

Consequence of the Spectral Decomposition for the SECOND TERM in $\mathcal{K}_r(\check{x}, R, \boldsymbol{z}, \mathcal{P})$

Recall:
$$R = (V^{-T} \otimes W^*) \cdot \Delta^{-1} \cdot (V^T \otimes W^{-*}).$$

We have

$$I_{n^2} - R \cdot r'(x) =$$

$$I_{n^2} - R(I_n \otimes (A - SX)^* + (A - SX)^T \otimes I_n) =$$

 $(V^{-T} \otimes W^*) \Delta^{-1} \Omega (V^T \otimes W^{-*}),$

くロト (過) (目) (日)

31/41

where

$$\Omega = \Delta - I_n \otimes \left(W(A - SX)W^{-1} \right)^* - \left(V^{-1}(A - SX)V \right)^T \otimes I_n.$$

Motivation Main Results Our Results/Contribution Algorithms Summary Numerical Re

Consequence of the Spectral Decomposition for the SECOND TERM in $\mathcal{K}_r(\check{x}, R, \boldsymbol{z}, \mathcal{P})$

Recall:
$$R = (V^{-T} \otimes W^*) \cdot \Delta^{-1} \cdot (V^T \otimes W^{-*}).$$

We have

$$\begin{split} I_{n^2} &- R \cdot r'(x) = \\ I_{n^2} &- R(I_n \otimes (A - SX)^* + (A - SX)^T \otimes I_n) = \\ & (V^{-T} \otimes W^*) \, \Delta^{-1} \, \Omega \, (V^T \otimes W^{-*}), \end{split}$$

where $\Omega = \Delta - I_n \otimes \left(W(A - SX)W^{-1} \right)^* - \left(V^{-1}(A - SX)V \right)^T \otimes I_n.$

・ロン ・ 同 と ・ ヨ と ・ ヨ と

Main Results Algorithms Numerical Results

Outline

Motivation

- The Riccati Equation and Some Basic Tools
- Our Main Problem
- Previous Works

Our Results/Contribution

Main Results

Algorithms

Numerical Results

æ

(< ∃) < ∃)</p>

< 🗇 🕨

Alg. 1: Compute an Interval Matrix Z s.t. z Encloses the FIRST TERM $-R \cdot r(\check{x})$ with $R = (V^{-T} \otimes W^*) \cdot \Delta^{-1} \cdot (V^T \otimes W^{-*})$

- 1: Enclose *RES* := $A^*\check{X} + \check{X}A \check{X}S\check{X} + Q$.
- 2: Enclose $\boldsymbol{G} := \boldsymbol{I}_{W}^{*} \cdot \boldsymbol{RES} \cdot \boldsymbol{V}.$
- 3: Enclose **H** := **G**./D.
- 4: Enclose $Z := -W^* HI_V$.
- 5: Output **Z**.

Cost of Alg. 1 is cubic.

イロト イポト イヨト イヨト

Alg. 1: Compute an Interval Matrix Z s.t. z Encloses the FIRST TERM $-R \cdot r(\check{x})$ with $R = (V^{-T} \otimes W^*) \cdot \Delta^{-1} \cdot (V^T \otimes W^{-*})$

- 1: Enclose *RES* := $A^*\check{X} + \check{X}A \check{X}S\check{X} + Q$.
- 2: Enclose $\boldsymbol{G} := \boldsymbol{I}_{W}^{*} \cdot \boldsymbol{RES} \cdot \boldsymbol{V}.$
- 3: Enclose **H** := **G**./D.
- 4: Enclose $Z := -W^* HI_V$.
- 5: Output **Z**.

Cost of Alg. 1 is cubic.

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation Main Results
Our Results/Contribution
Summary Numerical Resu

Alg. 2: Compute an Interval Matrix U s.t. u Encloses the Set of SECOND TERMS with x Replaced by $\check{x} + y$

Recall: $(I_{n^2} - R \cdot r'(\check{x} + y))y = (V^{-T} \otimes W^*) \Delta^{-1} \Omega (V^T \otimes W^{-*})y$, where

$$\Omega = I_n \otimes \Lambda^* - I_n \otimes \left(W(A - S(\check{X} + Y))W^{-1} \right)^* + \Lambda^T \otimes I_n - \left(V^{-1}(A - S(\check{X} + Y))V \right)^T \otimes I_n.$$

1: Enclose $ZZ = I_W^* \cdot Y \cdot V$, 2: Enclose $P = W \cdot (A - S \cdot (\check{X} + Y)) \cdot I_W$. 3: Enclose $Q = I_V \cdot (A - S \cdot (\check{X} + Y)) \cdot V$. 4: Enclose $E = (\Lambda - P)^* \cdot ZZ + ZZ \cdot (\Lambda - Q)$. 5: Enclose $N = E_{\cdot}/D$. 6: Enclose $U = W^* \cdot N \cdot I_V$

7: Output **U**.

Cost of Alg. 2 is also cubic.

・ロット (雪) (山) (山)

Motivation Main Results Our Results/Contribution Summary Numerical Resu

Alg. 2: Compute an Interval Matrix U s.t. u Encloses the Set of SECOND TERMS with x Replaced by $\check{x} + y$

Recall: $(I_{n^2} - R \cdot r'(\check{x} + y))y = (V^{-T} \otimes W^*) \Delta^{-1} \Omega (V^T \otimes W^{-*})y$, where

$$\Omega = I_n \otimes \Lambda^* - I_n \otimes \left(W(A - S(\check{X} + Y))W^{-1} \right)^* + \Lambda^T \otimes I_n - \left(V^{-1}(A - S(\check{X} + Y))V \right)^T \otimes I_n.$$

1: Enclose $ZZ = I_W^* \cdot Y \cdot V$, 2: Enclose $P = W \cdot (A - S \cdot (\check{X} + Y)) \cdot I_W$. 3: Enclose $Q = I_V \cdot (A - S \cdot (\check{X} + Y)) \cdot V$. 4: Enclose $E = (\Lambda - P)^* \cdot ZZ + ZZ \cdot (\Lambda - Q)$. 5: Enclose $N = E_{\cdot}/D$.

- 5. Enclose $\mathbf{N} = \mathbf{E} . / \mathbf{D}$. 6: Enclose $\mathbf{U} = \mathbf{W}^* \cdot \mathbf{N} \cdot \mathbf{I}_V$
- 7: Output **U**.

Cost of Alg. 2 is also cubic.

Motivation Main Results Our Results/Contribution Summary Numerical Resu

Alg. 2: Compute an Interval Matrix U s.t. u Encloses the Set of SECOND TERMS with x Replaced by $\check{x} + y$

Recall: $(I_{n^2} - R \cdot r'(\check{x} + y))y = (V^{-T} \otimes W^*) \Delta^{-1} \Omega (V^T \otimes W^{-*})y$, where

$$\Omega = I_n \otimes \Lambda^* - I_n \otimes \left(W(A - S(\check{X} + Y))W^{-1} \right)^* + \Lambda^T \otimes I_n - \left(V^{-1}(A - S(\check{X} + Y))V \right)^T \otimes I_n.$$

1: Enclose $ZZ = I_W^* \cdot Y \cdot V$, 2: Enclose $P = W \cdot (A - S \cdot (\check{X} + Y)) \cdot I_W$. 3: Enclose $Q = I_V \cdot (A - S \cdot (\check{X} + Y)) \cdot V$. 4: Enclose $E = (\Lambda - P)^* \cdot ZZ + ZZ \cdot (\Lambda - Q)$. 5: Enclose $N = E_{\cdot}/D$.

6: Enclose $\boldsymbol{U} = \boldsymbol{W}^* \cdot \boldsymbol{N} \cdot \boldsymbol{I}_V$

7: Output **U**.

Cost of Alg. 2 is also cubic.

・ ロ と く 雪 と く 雪 と ・

Motivation Main Results Our Results/Contribution Summary Numerical Res

Main Algorithm

- 1: Use a floating point algorithm to get an approximate solution \check{X} of the Riccati equation (1).
- 2: Use a floating point algorithm to compute V, W and Λ in the spectral decomposition of $A S\check{X}$.
- 3: Put $D \in \mathbb{C}^{n \times n}$ s.t. column d_j of D is diag $(\overline{\Lambda}) + (\Lambda)_{jj}(1, \ldots, 1)^T$.
- 4: Compute interval matrices $I_W \ni W^{-1}$ and $I_V \ni V^{-1}$.
- 5: Use Alg. 1 to compute an enclosure **Z** for $-R \cdot r(\check{x})$.
- 6: Put $\boldsymbol{X} = \boldsymbol{Z}$ and k = 0 {Prepare loop}

7: repeat

- 8: Put $\boldsymbol{Y} = \Box(0, \boldsymbol{X} \cdot [1 \varepsilon, 1 + \varepsilon])$, increment k { ε -inflation}
- 9: Use Alg. 2 to compute an interval matrix **U** such that **u** is an enclosure for the set $\{(I_{n^2} R \cdot r'(\check{x} + y))y : y \in y\}$
- 10: Enclose $\boldsymbol{X} = \boldsymbol{Z} + \boldsymbol{U}$
- 11: **until** ($\boldsymbol{X} \subseteq$ int \boldsymbol{Y} or k = 15)
- 12: if $X \subseteq$ int Y then {successful termination}

13: output
$$XX = \check{X} + X$$

14: end if

ヘロト 人間 ト ヘヨト ヘヨト

Main Results Algorithms Numerical Results

Outline

Motivation

- The Riccati Equation and Some Basic Tools
- Our Main Problem
- Previous Works

Our Results/Contribution

- Main Results
- Algorithms
- Numerical Results

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation Main Results
Our Results/Contribution Algorithms
Summary Numerical Results

Example 16 (well-conditioned) from benchmark examples for Riccati equations by Benner, Laub and Mehrmann, 1995 ARESOLV from Matlab's Robust Control Toolbox used for computing \check{X}

n	Ň X	Our Algorithm		
		double prec. res.		
	time	time	k	mrp
				arp
100	$2.3 \cdot 10^{-1}$	$7.0 \cdot 10^{-1}$	1	$4.0 \cdot 10^{-1}$
				8.8 · 10 ⁻⁷
200	$4.6 \cdot 10^{-1}$	1.1	1	8.4 · 10 ⁻¹
				1.9 · 10 ⁻⁶
400	3.9	8.8	1	8.4 · 10 ⁻¹
				3.0 · 10 ⁻⁶
800	$3.0 \cdot 10^{+1}$	6.4 · 10 ⁺¹	1	$9.6 \cdot 10^{-1}$
				$2.9 \cdot 10^{-6}$

< 🗇 🕨

Source: Benchmark Examples for Riccati Equations by Benner, Laub and Mehrmann, 1995

Example 5: A 9th-order continuous state space model of a tabular ammonia reactor n = 9, $t_{\check{X}} = 0.01$ sec., $t_{\check{X}} = 0.05$ sec. $mrp = 1.1 \times 10^{-12}$, $arp = 5.2 \times 10^{-14}$.

Example 19: A model of 35 coupled springs, dashpots and masses $n = 140, t_{\tilde{\chi}} = 2.2$ sec. $t_{\chi} = 5.5$ sec. after 7 iterations $mrp = 3.4 \times 10^{-9}, arp = 7.2 \times 10^{-13}.$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Source: Benchmark Examples for Riccati Equations by Benner, Laub and Mehrmann, 1995

Example 5: A 9th-order continuous state space model of a tabular ammonia reactor n = 9, $t_{\tilde{X}} = 0.01$ sec., $t_{\boldsymbol{X}} = 0.05$ sec. $mrp = 1.1 \times 10^{-12}$, $arp = 5.2 \times 10^{-14}$.

Example 19: A model of 35 coupled springs, dashpots and masses

 $n = 140, t_{\tilde{\chi}} = 2.2$ sec. $t_{\boldsymbol{X}} = 5.5$ sec. after 7 iterations $mrp = 3.4 \times 10^{-9}, arp = 7.2 \times 10^{-13}.$

ヘロト ヘ戸ト ヘヨト ヘヨト

Motivation Main Results
Our Results/Contribution
Summary
Numerical Results

Source: Benchmark Examples for Riccati Equations by Benner, Laub and Mehrmann, 1995

Example 17: A feedback controller $n = 21, t_{\check{X}} = 0.01$ sec. Our algorithm fails because V is ill-conditioned $\kappa_V = 2.4 \times 10^{+9}$, condition number of Riccati equation: $\kappa_{Ricc} = 1.3 \times 10^{+9}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Summary

- Reduction of the cost for verification to cubic via spectral decomposition of the closed loop matrix ⇒ comparable to the cost for getting X̃.
- Algorithm uses matrix-matrix operations \Rightarrow fast in INTLAB.
- Algorithm will not succeed if the eigenvector matrix *V* is ill-conditioned.
- Outlook
 - Verify stabilizing property of a solution to the CARE (1)
 - Try recent algorithms for multiplication of interval matrices (by Rump & Ozaki, Ogita, Oishi & Nguyen, Revol and others)
 - Discrete-time Riccati equations

ヘロト 人間ト 人団ト 人団ト

Questions ? Comments ? Or suggestions ?

イロト イポト イヨト イヨト

æ