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The Riccati Equation

The matrix equation

R(X ) := A∗X + XA− XSX + Q = 0, (1)

is called the continuous-time algebraic Riccati equation
(CARE), where

A ∈ Cn×n,

S = S∗ ∈ Cn×n,

Q = Q∗ ∈ Cn×n,

are given and X ∈ Cn×n is the unknown solution.
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The Closed Loop Matrix

The matrix A− SX is called the closed loop matrix associated
with the CARE (1).
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Stabilizing Solution of the CARE

Several applications require a Hermitian positive
semidefinite stabilizing solution of the CARE (1).
A Hermitian solution X of (1) is a stabilizing solution if the
closed loop matrix A− SX is stable, i.e., the spectrum of
A− SX lies in the closed left half-plane.
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Important Formula

vec-of-three-factors: vec(ABC) = (CT ⊗ A)vec(B).

⊗: Kronecker product of matrices
vec: stacks columns of a matrix into a long vector
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Important Formula

notation for simplicity: „lowercase := vec(uppercase)”

b := vec(B).
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Important Formula

so we write: vec(ABC) = (CT ⊗ A) b
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Fréchet Derivative of the function R(X )

The Fréchet derivative of R at X in the direction H is

R′(X ) · H = H(A− SX ) + (A− SX )∗H,

which means that

r ′(x) = I ⊗ (A− SX )∗ + (A− SX )T ⊗ I

∈ Cn2×n2
.
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Enclosing Solutions to Riccati Matrix Equations

Develop an efficient technique based on interval arithmetic
which provides guaranteed error bounds for solutions of
the continuous-time algebraic Riccati equation (1)
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An Interval Newton Method
Luther, Otten, Traczinski (1998) AND Luther, Otten (1999)

The Fréchet derivative of R at X is used to derive an
interval Sylvester matrix equation of the form
CX + XD = F ,
Transform the interval Sylvester equation into the large
interval linear system (I ⊗ C + DT ⊗ I)x = f with
x := vec(X ) and f := vec(F ) and solve it.
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Main Issue: Computational Complexity

The number of arithmetic operations needed to implement this
interval Newton technique is roughly O(n6) !
because the coefficient matrix of the resulting interval linear
system is n2 × n2 !
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Classical Krawczyk approach
Yano, Koga (2007) AND Yano, Koga (2008)

k(x̌ ,x) := x̌ − R · r(x̌) +
(
In2 − R · r ′(x)

)
(x − x̌),

where

r : Cn2 → Cn2
, x 7→ r(x̌) := vec(R(X̌ )),

r ′(x) =
(

I ⊗ (A− SX )∗ + (A− SX )T ⊗ I
)
∈ Cn2×n2

.
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Main Issue Again: Computational Complexity

Standard choice is to take R ∈ Cn2×n2
as an approximate

inverse of mid r ′(x).
R is needed explicitly. I − R r ′(x) is also needed explicitly.
Cost is O(n5) !
The number of arithmetic operations needed to implement
the classical Krawczyk approach is at-least O(n5) !
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Challenge

Reduce the cost to cubic !
The big question:

How to compute R and In2 −R · r ′(x) more cheaply ?
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Essence of Krawczyk-Type Iterations

Theorem (Rump 1983, AND Frommer, H. 2009)

Assume that f : D ⊂ CN → CN is continuous in D. Let x̌ ∈ D
and z ∈ ICN be such that x̌ + z ⊆ D. Moreover, assume that
P ⊂ CN×N is a set of matrices containing all slopes P(x̌ , y) for
y ∈ x̌ + z =: x . Finally, let R ∈ CN×N . Denote Kf (x̌ ,R, z ,P) the
set

Kf (x̌ ,R, z ,P) := {−Rf (x̌) + (I − RP)z : P ∈ P, z ∈ z}. (2)

Then, if Kf (x̌ ,R, z ,P) ⊆ int z , the function f has a zero x∗ in the
set x̌ +Kf (x̌ ,R, z ,P) ⊆ x . Moreover, if P also contains all slope
matrices P(y , x) for the function f and for x , y ∈ x , then this
zero is unique in x .
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Slopes and Fréchet derivative of the function R(X )

Theorem
Assume that X is an Hermitian interval matrix and X ,Y ∈ X .
Then, the interval arithmetic evaluation of the Fréchet derivative
of R contains all its slopes.
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Slopes and Fréchet derivative of the function R(X )

Proof.
Suppose that X ,Y ∈ X .

R(Y )− R(X ) = A∗Y + YA− YSY − A∗X − XA + XSX
= A∗(Y − X ) + (Y − X )A

− 1
2

((Y + X )S(Y − X ) + (Y − X )S(Y + X )) ,

So,

r(y)− r(x) = [I ⊗ (A∗ − 1
2

(Y + X )S) +

(AT − 1
2

(S(Y + X ))T )⊗ I](y − x).
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Slopes and Fréchet derivative of the function R(X )

Proof.
This means that

P(y , x) = I ⊗ (A∗ − 1
2

(Y + X )S) + (AT − 1
2

(S(Y + X ))T )⊗ I.

Since X ,Y ∈ X , by the enclosure property of interval arithmetic
we have

P(y , x) ∈ I ⊗ (A∗ − XS) + (A− SX )T ⊗ I.

Since X is Hermitian, X ∗,Y ∗ ∈ X . Moreover, S∗ = S. So,
A∗ − XS = (A− SX )∗ and therefore

P(y , x) ∈ I ⊗ (A− SX )∗ + (A− SX )T ⊗ I.︸ ︷︷ ︸
interval arithmetic evaluation of R′(X )
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So, What Do We Need ?

Step 1: An as thin as possible enclosure for

Kf (x̌ ,R, z ,P) := {−R f (x̌) + (I − RP)z : P ∈ P, z ∈ z}.
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So, What Do We Need ?

Step 1: An as thin as possible enclosure for

Kf (x̌ ,R, z ,P) := { −R f (x̌)︸ ︷︷ ︸
FIRST TERM

+ (I − RP)z : P ∈ P, z ∈ z︸ ︷︷ ︸
SECOND TERM

}.

Step 2: Check the relation Kf (x̌ ,R, z ,P) ⊆ int z .
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The Key: Spectral Decomposition of the Closed Loop
Matrix

Let

A− SX = V ΛW with
V ,Λ,W ∈ Cn×n,

VW = I,
Λ = Diag(λ1, λ2, · · · , λn) diagonal.
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Consequence of the Spectral Decomposition

Recall: r ′(x) = I ⊗ (A− SX )∗ + (A− SX )T ⊗ I.

r ′(x) =

(V−T ⊗W ∗)·(
I ⊗ [W (A− SX )W−1]∗ + [V−1(A− SX )V ]T ⊗ I

)
·

(V T⊗W−∗),

Another basic formula: (A⊗ B) · (C ⊗ D) = (A · C ⊗ B · D).

Behnam Hashemi Enclosures for solutions to Riccati equations 27/41



Motivation
Our Results/Contribution

Summary

Main Results
Algorithms
Numerical Results

Consequence of the Spectral Decomposition

Recall: r ′(x) = I ⊗ (A− SX )∗ + (A− SX )T ⊗ I.

r ′(x) =

(V−T ⊗W ∗)·(
I ⊗ [W (A− SX )W−1]∗ + [V−1(A− SX )V ]T ⊗ I

)
·

(V T⊗W−∗),

Another basic formula: (A⊗ B) · (C ⊗ D) = (A · C ⊗ B · D).

Behnam Hashemi Enclosures for solutions to Riccati equations 27/41



Motivation
Our Results/Contribution

Summary

Main Results
Algorithms
Numerical Results

Consequence of the Spectral Decomposition

Recall: r ′(x) = I ⊗ (A− SX )∗ + (A− SX )T ⊗ I.

r ′(x) =

(V−T ⊗W ∗)·(
I ⊗ [W (A− SX )W−1]∗ + [V−1(A− SX )V ]T ⊗ I

)
·

(V T⊗W−∗),

Another basic formula: (A⊗ B) · (C ⊗ D) = (A · C ⊗ B · D).

Behnam Hashemi Enclosures for solutions to Riccati equations 27/41



Motivation
Our Results/Contribution

Summary

Main Results
Algorithms
Numerical Results

Consequence of the Spectral Decomposition

r ′(x) =

(V−T ⊗W ∗)·I ⊗ [W (A− SX )W−1︸ ︷︷ ︸
' Λ

]∗ + [V−1(A− SX )V︸ ︷︷ ︸
' Λ

]T ⊗ I

 ·
(V T⊗W−∗),
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Consequence of the Spectral Decomposition: An
Approximate Inverse for mid r ′(x)

R = (V−T ⊗W ∗) ·
(

I ⊗ Λ∗ + ΛT ⊗ I
)−1
· (V T ⊗W−∗),
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Consequence of the Spectral Decomposition: An
Approximate Inverse for mid r ′(x)

R = (V−T ⊗W ∗) ·

I ⊗ Λ∗ + ΛT ⊗ I︸ ︷︷ ︸
−1

· (V T ⊗W−∗),

Extremely important:
∆ := I ⊗ Λ∗ + ΛT ⊗ I ∈ Cn2×n2

is diagonal.
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Consequence of the Spectral Decomposition for the
SECOND TERM in Kr (x̌ ,R, z ,P)

Recall: R = (V−T ⊗W ∗) ·∆−1 · (V T ⊗W−∗).
We have

In2 − R · r ′(x) =

In2 − R(In ⊗ (A− SX )∗ + (A− SX )T ⊗ In) =

(V−T⊗W ∗) ∆−1 Ω (V T⊗W−∗),

where
Ω = ∆− In ⊗

(
W (A− SX )W−1)∗ − (V−1(A− SX )V

)T ⊗ In.
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Alg. 1: Compute an Interval Matrix Z s.t. z Encloses
the FIRST TERM −R · r(x̌) with
R = (V−T ⊗W ∗) ·∆−1 · (V T ⊗W−∗)

1: Enclose RES := A∗X̌ + X̌A− X̌SX̌ + Q.
2: Enclose G := I∗W · RES · V .
3: Enclose H := G./D.
4: Enclose Z := −W ∗HIV .
5: Output Z .

Cost of Alg. 1 is cubic.
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Alg. 2: Compute an Interval Matrix U s.t. u Encloses
the Set of SECOND TERMS with x Replaced by x̌ + y

Recall: (In2 − R · r ′(x̌ + y))y = (V−T ⊗W ∗) ∆−1 Ω (V T ⊗W−∗)y ,
where

Ω = In ⊗ Λ∗ − In ⊗
(

W (A− S(X̌ + Y ))W−1
)∗

+

ΛT ⊗ In −
(

V−1(A− S(X̌ + Y ))V
)T
⊗ In.

1: Enclose ZZ = I∗W · Y · V ,
2: Enclose P = W ·

(
A− S · (X̌ + Y )

)
· IW .

3: Enclose Q = IV ·
(

A− S · (X̌ + Y )
)
· V ).

4: Enclose E = (Λ− P)∗ · ZZ + ZZ · (Λ−Q).
5: Enclose N = E ./D.
6: Enclose U = W ∗ · N · IV
7: Output U.

Cost of Alg. 2 is also cubic.
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7: Output U.

Cost of Alg. 2 is also cubic.
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Main Algorithm

1: Use a floating point algorithm to get an approximate solution X̌ of
the Riccati equation (1).

2: Use a floating point algorithm to compute V , W and Λ in the
spectral decomposition of A− SX̌ .

3: Put D ∈ Cn×n s.t. column dj of D is diag(Λ) + (Λ)jj (1, . . . ,1)T .
4: Compute interval matrices IW 3W−1 and IV 3 V−1.
5: Use Alg. 1 to compute an enclosure Z for −R · r(x̌).
6: Put X = Z and k = 0 {Prepare loop}
7: repeat
8: Put Y = �(0,X · [1− ε,1 + ε]), increment k {ε-inflation}
9: Use Alg. 2 to compute an interval matrix U such that u is an

enclosure for the set {(In2 − R · r ′(x̌ + y))y : y ∈ y}
10: Enclose X = Z + U
11: until (X ⊆ int Y or k = 15)
12: if X ⊆ int Y then {successful termination}
13: output XX = X̌ + X
14: end if
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Example 16 (well-conditioned) from benchmark examples for
Riccati equations by Benner, Laub and Mehrmann, 1995

ARESOLV from Matlab’s Robust Control Toolbox used for computing X̌

n X̌ Our Algorithm
double prec. res.

time time k mrp
arp

100 2.3 · 10−1 7.0 · 10−1 1 4.0 · 10−1

8.8 · 10−7

200 4.6 · 10−1 1.1 1 8.4 · 10−1

1.9 · 10−6

400 3.9 8.8 1 8.4 · 10−1

3.0 · 10−6

800 3.0 · 10+1 6.4 · 10+1 1 9.6 · 10−1

2.9 · 10−6
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Source: Benchmark Examples for Riccati Equations
by Benner, Laub and Mehrmann, 1995

Example 5: A 9th-order continuous state space model of a
tabular ammonia reactor
n = 9, tX̌ = 0.01 sec., tX = 0.05 sec.
mrp = 1.1× 10−12, arp = 5.2× 10−14.

Example 19: A model of 35 coupled springs, dashpots and
masses
n = 140, tX̌ = 2.2 sec.
tX = 5.5 sec. after 7 iterations
mrp = 3.4× 10−9, arp = 7.2× 10−13.
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Source: Benchmark Examples for Riccati Equations
by Benner, Laub and Mehrmann, 1995

Example 17: A feedback controller
n = 21, tX̌ = 0.01 sec.
Our algorithm fails because V is ill-conditioned
κV = 2.4× 10+9,
condition number of Riccati equation: κRicc = 1.3× 10+9.
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Reduction of the cost for verification to cubic via spectral
decomposition of the closed loop matrix⇒ comparable to
the cost for getting X̌ .
Algorithm uses matrix-matrix operations⇒ fast in INTLAB.
Algorithm will not succeed if the eigenvector matrix V is
ill-conditioned.

Outlook
Verify stabilizing property of a solution to the CARE (1)
Try recent algorithms for multiplication of interval matrices
(by Rump & Ozaki, Ogita, Oishi & Nguyen, Revol and
others)
Discrete-time Riccati equations
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Questions ?
Comments ?

Or suggestions ?
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