Verified Computation of Hermitian (Symmetric) Solutions to Continuous-Time Algebraic Riccati Matrix Equations

Behnam Hashemi

Department of Mathematics
Shiraz University of Technology

SCAN 2012, Novosibirsk

Outline

(1) Motivation

- The Riccati Equation and Some Basic Tools
- Our Main Problem
- Previous Works
(2) Our Results/Contribution
- Main Results
- Algorithms
- Numerical Results

Outline

(1) Motivation

- The Riccati Equation and Some Basic Tools
- Our Main Problem
- Previous Works
(2) Our Results/Contribution
- Main Results
- Algorithms
- Numerical Results

The Riccati Equation

The matrix equation

$$
\begin{equation*}
R(X):=A^{*} X+X A-X S X+Q=0, \tag{1}
\end{equation*}
$$

is called the continuous-time algebraic Riccati equation (CARE), where

$$
\begin{aligned}
& A \in \mathbb{C}^{n \times n}, \\
& S=S^{*} \in \mathbb{C}^{n \times n}, \\
& Q=Q^{*} \in \mathbb{C}^{n \times n},
\end{aligned}
$$

are given and $X \in \mathbb{C}^{n \times n}$ is the unknown solution.

The Closed Loop Matrix

The matrix $A-S X$ is called the closed loop matrix associated with the CARE (1).

Stabilizing Solution of the CARE

- Several applications require a Hermitian positive semidefinite stabilizing solution of the CARE (1).
- A Hermitian solution X of (1) is a stabilizing solution if the closed loop matrix $A-S X$ is stable, i.e., the spectrum of $A-S X$ lies in the closed left half-plane.

Important Formula

vec-of-three-factors: $\operatorname{vec}(A B C)=\left(C^{\top} \otimes A\right) \operatorname{vec}(B)$.
\otimes : Kronecker product of matrices
vec: stacks columns of a matrix into a long vector

Important Formula

notation for simplicity: „lowercase := vec(uppercase)"

$$
b:=\operatorname{vec}(B) .
$$

Important Formula

so we write:
$\operatorname{vec}(A B C)=\left(C^{T} \otimes A\right) b$

Fréchet Derivative of the function $R(X)$

The Fréchet derivative of R at X in the direction H is

$$
R^{\prime}(X) \cdot H=H(A-S X)+(A-S X)^{*} H,
$$

which means that

$$
\begin{aligned}
r^{\prime}(x) & =I \otimes(A-S X)^{*}+(A-S X)^{T} \otimes I \\
& \in \mathbb{C}^{n^{2} \times n^{2}}
\end{aligned}
$$

Outline

(1) Motivation

- The Riccati Equation and Some Basic Tools

- Our Main Problem
- Previous WorksOur Results/Contribution
- Main Results
- Algorithms
- Numerical Results

Enclosing Solutions to Riccati Matrix Equations

- Develop an efficient technique based on interval arithmetic which provides guaranteed error bounds for solutions of the continuous-time algebraic Riccati equation (1)

Outline

(1) Motivation

- The Riccati Equation and Some Basic Tools - Our Main Problem
- Previous WorksOur Results/Contribution
- Main Results
- Algorithms
- Numerical Results

An Interval Newton Method
 Luther, Otten, Traczinski (1998) AND Luther, Otten (1999)

- The Fréchet derivative of R at X is used to derive an interval Sylvester matrix equation of the form $C X+X D=F$,
- Transform the interval Sylvester equation into the large interval linear system $\left(I \otimes \boldsymbol{C}+\boldsymbol{D}^{T} \otimes I\right) x=\boldsymbol{f}$ with $x:=\operatorname{vec}(X)$ and $\boldsymbol{f}:=\operatorname{vec}(\boldsymbol{F})$ and solve it.

An Interval Newton Method
 Luther, Otten, Traczinski (1998) AND Luther, Otten (1999)

- The Fréchet derivative of R at X is used to derive an interval Sylvester matrix equation of the form
$\boldsymbol{C X}+\boldsymbol{X D}=\boldsymbol{F}$,
- Transform the interval Sylvester equation into the large interval linear system $\left(I \otimes \boldsymbol{C}+\boldsymbol{D}^{T} \otimes I\right) x=\boldsymbol{f}$ with $x:=\operatorname{vec}(X)$ and $\boldsymbol{f}:=\operatorname{vec}(\boldsymbol{F})$ and solve it.

An Interval Newton Method Luther, Otten, Traczinski (1998) AND Luther, Otten (1999)

- The Fréchet derivative of R at X is used to derive an interval Sylvester matrix equation of the form
$\boldsymbol{C X}+X \boldsymbol{D}=\boldsymbol{F}$,
- Transform the interval Sylvester equation into the large interval linear system $\left(I \otimes \boldsymbol{C}+\boldsymbol{D}^{T} \otimes I\right) x=\boldsymbol{f}$ with $x:=\operatorname{vec}(X)$ and $\boldsymbol{f}:=\operatorname{vec}(\boldsymbol{F})$ and solve it.

Main Issue: Computational Complexity

The number of arithmetic operations needed to implement this interval Newton technique is roughly $\mathcal{O}\left(n^{6}\right)$!
because the coefficient matrix of the resulting interval linear system is n^{2}

Main Issue: Computational Complexity

The number of arithmetic operations needed to implement this interval Newton technique is roughly $\mathcal{O}\left(n^{6}\right)$! because the coefficient matrix of the resulting interval linear system is $n^{2} \times n^{2}$!

Classical Krawczyk approach Yano, Koga (2007) AND Yano, Koga (2008)

where

Classical Krawczyk approach Yano, Koga (2007) AND Yano, Koga (2008)

$$
\boldsymbol{k}(\check{x}, \boldsymbol{x}):=\check{x}-R \cdot r(\check{x})+\left(I_{n^{2}}-R \cdot r^{\prime}(\boldsymbol{x})\right)(\boldsymbol{x}-\check{x}),
$$

where

$$
\begin{aligned}
& r: \mathbb{C}^{n^{2}} \rightarrow \mathbb{C}^{n^{2}}, x \mapsto r(\check{x}):=\operatorname{vec}(R(\check{X})) \\
& r^{\prime}(x)=\left(I \otimes(A-S X)^{*}+(A-S X)^{T} \otimes I\right) \in \mathbb{C}^{n^{2} \times n^{2}}
\end{aligned}
$$

Main Issue Again: Computational Complexity

- Standard choice is to take $R \in \mathbb{C}^{n^{2} \times n^{2}}$ as an approximate inverse of mid $\boldsymbol{r}^{\prime}(\boldsymbol{x})$.
- R is needed explicitly. $I-R r^{\prime}(\boldsymbol{x})$ is also needed explicitly.
- Cost is $\mathcal{O}\left(n^{5}\right)$!
- The number of arithmetic operations needed to implement the classical Krawczyk approach is at-least $\mathcal{O}\left(n^{5}\right)$!

Main Issue Again: Computational Complexity

- Standard choice is to take $R \in \mathbb{C}^{n^{2} \times n^{2}}$ as an approximate inverse of mid $\boldsymbol{r}^{\prime}(\boldsymbol{x})$.
- R is needed explicitly. I-R $\boldsymbol{r}^{\prime}(\boldsymbol{x})$ is also needed explicitly.

Cost is $\mathcal{O}\left(n^{5}\right)$!

- The number of arithmetic operations needed to implement the classical Krawczyk approach is at-least $\mathcal{O}\left(n^{5}\right)$!

Main Issue Again: Computational Complexity

- Standard choice is to take $R \in \mathbb{C}^{n^{2} \times n^{2}}$ as an approximate inverse of mid $\boldsymbol{r}^{\prime}(\boldsymbol{x})$.
- R is needed explicitly. $I-R \boldsymbol{r}^{\prime}(\boldsymbol{x})$ is also needed explicitly.
- Cost is $\mathcal{O}\left(n^{5}\right)$!
- The number of arithmetic operations needed to implement the classical Krawczyk approach is at-least $\mathcal{O}\left(n^{5}\right)$!

Main Issue Again: Computational Complexity

- Standard choice is to take $R \in \mathbb{C}^{n^{2} \times n^{2}}$ as an approximate inverse of mid $\boldsymbol{r}^{\prime}(\boldsymbol{x})$.
- R is needed explicitly. $I-R \boldsymbol{r}^{\prime}(\boldsymbol{x})$ is also needed explicitly.
- Cost is $\mathcal{O}\left(n^{5}\right)$!
- The number of arithmetic operations needed to implement the classical Krawczyk approach is at-least $\mathcal{O}\left(n^{5}\right)$!

Challenge

Reduce the cost to cubic !

How to compute R and $I_{n^{2}}-R \cdot r^{\prime}(\boldsymbol{x})$ more cheaply ?

Challenge

Reduce the cost to cubic !
The big question:
How to compute R and $I_{n^{2}}-R \cdot r^{\prime}(\boldsymbol{x})$ more cheaply?

Outline

(1) Motivation

- The Riccati Equation and Some Basic Tools
- Our Main Problem
- Previous Works
(2) Our Results/Contribution
- Main Results
- Algorithms
- Numerical Results

Essence of Krawczyk-Type Iterations

Theorem (Rump 1983, AND Frommer, H. 2009)

Assume that $f: D \subset \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ is continuous in D. Let $\check{x} \in D$ and $\mathbf{z} \in \mathbb{I C}^{N}$ be such that $\check{x}+\boldsymbol{z} \subseteq D$. Moreover, assume that $\mathcal{P} \subset \mathbb{C}^{N \times N}$ is a set of matrices containing all slopes $P(\check{x}, y)$ for $y \in \check{x}+\boldsymbol{z}=: \boldsymbol{x}$. Finally, let $R \in \mathbb{C}^{N \times N}$. Denote $\mathcal{K}_{f}(\check{x}, R, \boldsymbol{z}, \mathcal{P})$ the set

$$
\begin{equation*}
\mathcal{K}_{f}(\check{x}, R, \boldsymbol{z}, \mathcal{P}):=\{-R f(\check{x})+(I-R P) z: P \in \mathcal{P}, z \in \boldsymbol{z}\} . \tag{2}
\end{equation*}
$$

Then, if $\mathcal{K}_{f}(\check{\boldsymbol{x}}, R, \mathbf{z}, \mathcal{P}) \subseteq$ int \boldsymbol{z}, the function f has a zero x^{*} in the set $\check{x}+\mathcal{K}_{f}(\check{x}, R, \boldsymbol{z}, \mathcal{P}) \subseteq \boldsymbol{x}$. Moreover, if \mathcal{P} also contains all slope matrices $P(y, x)$ for the function f and for $x, y \in \boldsymbol{x}$, then this zero is unique in \boldsymbol{x}.

Slopes and Fréchet derivative of the function $R(X)$

Theorem

Assume that \boldsymbol{X} is an Hermitian interval matrix and $X, Y \in \boldsymbol{X}$. Then, the interval arithmetic evaluation of the Fréchet derivative of R contains all its slopes.

Slopes and Fréchet derivative of the function $R(X)$

Proof.

Suppose that $X, Y \in \boldsymbol{X}$.

$$
\begin{aligned}
R(Y)-R(X) & =A^{*} Y+Y A-Y S Y-A^{*} X-X A+X S X \\
& =A^{*}(Y-X)+(Y-X) A \\
& -\frac{1}{2}((Y+X) S(Y-X)+(Y-X) S(Y+X))
\end{aligned}
$$

So,

$$
\begin{aligned}
r(y)-r(x)= & {\left[I \otimes\left(A^{*}-\frac{1}{2}(Y+X) S\right)+\right.} \\
& \left.\left(A^{T}-\frac{1}{2}(S(Y+X))^{T}\right) \otimes I\right](y-x)
\end{aligned}
$$

Slopes and Fréchet derivative of the function $R(X)$

Proof.

This means that

$$
P(y, x)=I \otimes\left(A^{*}-\frac{1}{2}(Y+X) S\right)+\left(A^{T}-\frac{1}{2}(S(Y+X))^{T}\right) \otimes I .
$$

Since $X, Y \in X$, by the enclosure property of interval arithmetic we have

Since \boldsymbol{X} is Hermitian, $X^{*}, Y^{*} \in \boldsymbol{X}$. Moreover, $S^{*}=S$. So, $A^{*}-X S=(A-S X)^{*}$ and therefore

Slopes and Fréchet derivative of the function $R(X)$

Proof.

This means that

$$
P(y, x)=I \otimes\left(A^{*}-\frac{1}{2}(Y+X) S\right)+\left(A^{T}-\frac{1}{2}(S(Y+X))^{T}\right) \otimes I
$$

Since $X, Y \in \boldsymbol{X}$, by the enclosure property of interval arithmetic we have

$$
P(y, x) \in I \otimes\left(A^{*}-X S\right)+(A-S \boldsymbol{X})^{T} \otimes I
$$

Since X is Hermitian, $X^{*}, Y^{*} \in X$. Moreover, $S^{*}=S$. So, $A^{*}-\boldsymbol{X} S=(\boldsymbol{A}-S \boldsymbol{X})^{*}$ and therefore

Slopes and Fréchet derivative of the function $R(X)$

Proof.

This means that

$$
P(y, x)=I \otimes\left(A^{*}-\frac{1}{2}(Y+X) S\right)+\left(A^{T}-\frac{1}{2}(S(Y+X))^{T}\right) \otimes I
$$

Since $X, Y \in \boldsymbol{X}$, by the enclosure property of interval arithmetic we have

$$
P(y, x) \in I \otimes\left(A^{*}-X S\right)+(A-S \boldsymbol{X})^{T} \otimes I .
$$

Since \boldsymbol{X} is Hermitian, $X^{*}, Y^{*} \in \boldsymbol{X}$. Moreover, $S^{*}=S$. So, $\boldsymbol{A}^{*}-\boldsymbol{X} S=(\boldsymbol{A}-\boldsymbol{S X})^{*}$ and therefore

$$
P(y, x) \in \underbrace{I \otimes(A-S X)^{*}+(A-S \boldsymbol{X})^{\top} \otimes I .}_{\text {interval arithmetic evaluation of } R^{\prime}(X)}
$$

So, What Do We Need?

Step 1: An as thin as possible enclosure for

$$
\mathcal{K}_{f}(\check{x}, R, \boldsymbol{z}, \mathcal{P}):=\{-R f(\check{x})+(I-R P) z: P \in \mathcal{P}, z \in \boldsymbol{z}\} .
$$

So, What Do We Need?

Step 1: An as thin as possible enclosure for

$$
\mathcal{K}_{f}(\check{x}, R, \boldsymbol{z}, \mathcal{P}):=\{\underbrace{-R f(\check{x})}_{\text {FIRST TERM }}+\underbrace{(I-R P) z: P \in \mathcal{P}, \boldsymbol{z} \in \boldsymbol{z}}_{\text {SECOND TERM }}\} .
$$

Step 2: Check the relation $\mathcal{K}_{f}(\check{x}, R, z, \mathcal{P}) \subseteq$ int \boldsymbol{z}.

So, What Do We Need?

Step 1: An as thin as possible enclosure for

$$
\mathcal{K}_{f}(\check{x}, R, \boldsymbol{z}, \mathcal{P}):=\{\underbrace{-R f(\check{x})}_{\text {FIRST TERM }}+\underbrace{(I-R P) z: P \in \mathcal{P}, \boldsymbol{z} \in \boldsymbol{z}}_{\text {SECOND TERM }}\} .
$$

Step 2: Check the relation $\mathcal{K}_{f}(\check{x}, R, \boldsymbol{z}, \mathcal{P}) \subseteq \operatorname{int} \boldsymbol{z}$.

The Key: Spectral Decomposition of the Closed Loop Matrix

Let

$A-S X=V \wedge W$ with

$$
\begin{aligned}
& V, \Lambda, W \in \mathbb{C}^{n \times n} \\
& V W=I \\
& \Lambda=\operatorname{Diag}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right) \text { diagonal. }
\end{aligned}
$$

Consequence of the Spectral Decomposition

Recall: $r^{\prime}(x)=I \otimes(A-S X)^{*}+(A-S X)^{T} \otimes I$.

Another basic formula: $(A \otimes B) \cdot(C \otimes D)=(A \cdot C \otimes B \cdot D)$.

Consequence of the Spectral Decomposition

Recall: $r^{\prime}(x)=I \otimes(A-S X)^{*}+(A-S X)^{T} \otimes I$.

$$
r^{\prime}(x)=
$$

$$
\left(V^{-T} \otimes W^{*}\right)
$$

$$
\left(I \otimes\left[W(A-S X) W^{-1}\right]^{*}+\left[V^{-1}(A-S X) V\right]^{T} \otimes I\right)
$$

$$
\left(V^{\top} \otimes W^{-*}\right)
$$

Another basic formula: $(A \otimes B) \cdot(C \otimes D)=(A \cdot C \otimes B \cdot D)$.

Consequence of the Spectral Decomposition

Recall: $r^{\prime}(x)=I \otimes(A-S X)^{*}+(A-S X)^{T} \otimes I$.
$r^{\prime}(x)=$

$$
\begin{aligned}
& \left(V^{-T} \otimes W^{*}\right) \\
& \qquad \begin{array}{l}
\left(I \otimes\left[W(A-S X) W^{-1}\right]^{*}+\left[V^{-1}(A-S X) V\right]^{T} \otimes I\right) \\
\left(V^{T} \otimes W^{-*}\right)
\end{array}
\end{aligned}
$$

Another basic formula: $(A \otimes B) \cdot(C \otimes D)=(A \cdot C \otimes B \cdot D)$.

Consequence of the Spectral Decomposition

$$
r^{\prime}(x)=
$$

$$
\left(V^{-T} \otimes W^{*}\right)
$$

$$
\begin{array}{r}
(I \otimes[\underbrace{W(A-S X) W^{-1}}_{\simeq \wedge}]^{*}+[\underbrace{V^{-1}(A-S X) V}_{\simeq \wedge}]^{T} \otimes I) \\
\left(V^{T} \otimes W^{-*}\right)
\end{array}
$$

Consequence of the Spectral Decomposition: An Approximate Inverse for mid $r^{\prime}(\boldsymbol{x})$

$$
R=\left(V^{-T} \otimes W^{*}\right) \cdot\left(I \otimes \Lambda^{*}+\Lambda^{T} \otimes I\right)^{-1} \cdot\left(V^{T} \otimes W^{-*}\right),
$$

Consequence of the Spectral Decomposition: An Approximate Inverse for $\operatorname{mid} r^{\prime}(\boldsymbol{x})$

$$
R=\left(V^{-T} \otimes W^{*}\right) \cdot(\underbrace{I \otimes \Lambda^{*}+\Lambda^{T} \otimes I})^{-1} \cdot\left(V^{T} \otimes W^{-*}\right),
$$

Extremely important:

$$
\Delta:=I \otimes \Lambda^{*}+\Lambda^{T} \otimes I \in \mathbb{C}^{n^{2} \times n^{2}} \text { is diagonal. }
$$

Consequence of the Spectral Decomposition for the in $\mathcal{K}_{r}(\check{x}, R, \mathbf{z}, \mathcal{P})$

Recall: $R=\left(V^{-T} \otimes W^{*}\right) \cdot \Delta^{-1} \cdot\left(V^{T} \otimes W^{-*}\right)$.
We have

$$
\begin{aligned}
& I_{n^{2}}-R \cdot r^{\prime}(x)= \\
& I_{n^{2}}-R\left(I_{n} \otimes(A-S X)^{*}+(A-S X)^{T} \otimes I_{n}\right)=
\end{aligned}
$$

where

Consequence of the Spectral Decomposition for the in $\mathcal{K}_{r}(\check{x}, R, \mathbf{z}, \mathcal{P})$

Recall: $R=\left(V^{-T} \otimes W^{*}\right) \cdot \Delta^{-1} \cdot\left(V^{T} \otimes W^{-*}\right)$.
We have

$$
\begin{aligned}
& I_{n^{2}}-R \cdot r^{\prime}(x)= \\
& I_{n^{2}}-R\left(I_{n} \otimes(A-S X)^{*}+(A-S X)^{T} \otimes I_{n}\right)=
\end{aligned}
$$

$$
\left(V^{-T} \otimes W^{*}\right) \Delta^{-1} \Omega\left(V^{T} \otimes W^{-*}\right)
$$

where
$\Omega=\Delta-I_{n} \otimes\left(W(A-S X) W^{-1}\right)^{*}-\left(V^{-1}(A-S X) V\right)^{T} \otimes I_{n}$.

Outline

Motivation

- The Riccati Equation and Some Basic Tools
- Our Main Problem
- Previous Works
(2) Our Results/Contribution
- Main Results
- Algorithms
- Numerical Results

Alg. 1: Compute an Interval Matrix Z s.t. z Encloses the FIRST TERM $-R \cdot r(\check{x})$ with
 $$
R=\left(V^{-T} \otimes W^{*}\right) \cdot \Delta^{-1} \cdot\left(V^{\top} \otimes W^{-*}\right)
$$

1: Enclose RES $:=A^{*} \check{X}+\check{X} A-\check{X} S \check{X}+Q$.
2: Enclose $\boldsymbol{G}:=\boldsymbol{I}_{W}^{*} \cdot \boldsymbol{R E S} \cdot V$.
3: Enclose $\boldsymbol{H}:=\boldsymbol{G}$./D.
4: Enclose $\boldsymbol{Z}:=-\boldsymbol{W}^{*} \boldsymbol{H} \boldsymbol{I}_{V}$.
5: Output \boldsymbol{Z}.

Alg. 1: Compute an Interval Matrix Z s.t. z Encloses the FIRST TERM $-R \cdot r(\check{x})$ with
 $$
R=\left(V^{-T} \otimes W^{*}\right) \cdot \Delta^{-1} \cdot\left(V^{\top} \otimes W^{-*}\right)
$$

1: Enclose RES $:=A^{*} \check{X}+\check{X} A-\check{X} S \check{X}+Q$.
2: Enclose $\boldsymbol{G}:=\boldsymbol{I}_{W}^{*} \cdot \boldsymbol{R E S} \cdot V$.
3: Enclose $\boldsymbol{H}:=\boldsymbol{G}$./D.
4: Enclose $\boldsymbol{Z}:=-\boldsymbol{W}^{*} \boldsymbol{H} \boldsymbol{I}_{V}$.
5: Output \boldsymbol{Z}.
Cost of Alg. 1 is cubic.

Alg. 2: Compute an Interval Matrix \boldsymbol{U} s.t. \boldsymbol{u} Encloses the Set of SECOND TERMS with x Replaced by $\check{x}+y$

Recall: $\left(I_{n^{2}}-R \cdot r^{\prime}(\check{x}+y)\right) y=\left(V^{-T} \otimes W^{*}\right) \Delta^{-1} \Omega\left(V^{\top} \otimes W^{-*}\right) y$, where

$$
\begin{aligned}
\Omega= & I_{n} \otimes \Lambda^{*}-I_{n} \otimes\left(W(A-S(\check{X}+Y)) W^{-1}\right)^{*}+ \\
& \Lambda^{T} \otimes I_{n}-\left(V^{-1}(A-S(\check{X}+Y)) V\right)^{T} \otimes I_{n}
\end{aligned}
$$

5: Enclose $\boldsymbol{N}=\boldsymbol{E}$./D
6: Enclose $\boldsymbol{U}=W^{*} \cdot \boldsymbol{N} \cdot I_{V}$
7: Output U

Alg. 2: Compute an Interval Matrix \boldsymbol{U} s.t. \boldsymbol{u} Encloses the Set of SECOND TERMS with x Replaced by $\check{x}+y$

Recall: $\left(I_{n^{2}}-R \cdot r^{\prime}(\check{x}+y)\right) y=\left(V^{-T} \otimes W^{*}\right) \Delta^{-1} \Omega\left(V^{T} \otimes W^{-*}\right) y$, where

$$
\begin{aligned}
\Omega= & I_{n} \otimes \Lambda^{*}-I_{n} \otimes\left(W(A-S(\check{X}+Y)) W^{-1}\right)^{*}+ \\
& \Lambda^{T} \otimes I_{n}-\left(V^{-1}(A-S(\check{X}+Y)) V\right)^{T} \otimes I_{n}
\end{aligned}
$$

1: Enclose $\boldsymbol{Z Z}=\boldsymbol{I}_{W}^{*} \cdot \boldsymbol{Y} \cdot V$,
2: Enclose $\boldsymbol{P}=W \cdot(\boldsymbol{A}-\boldsymbol{S} \cdot(\check{X}+\boldsymbol{Y})) \cdot \boldsymbol{I}_{W}$.
3: Enclose $\boldsymbol{Q}=\boldsymbol{I} V \cdot(A-S \cdot(\check{X}+\boldsymbol{Y})) \cdot V)$.
4: Enclose $\boldsymbol{E}=(\Lambda-\boldsymbol{P})^{*} \cdot \mathbf{Z Z}+\boldsymbol{Z Z} \cdot(\Lambda-\boldsymbol{Q})$.
5: Enclose $\boldsymbol{N}=\boldsymbol{E} . / D$.
6: Enclose $\boldsymbol{U}=W^{*} \cdot \boldsymbol{N} \cdot \boldsymbol{I}_{V}$
7: Output U.

Alg. 2: Compute an Interval Matrix \boldsymbol{U} s.t. \boldsymbol{u} Encloses the Set of SECOND TERMS with x Replaced by $\check{x}+y$

Recall: $\left(I_{n^{2}}-R \cdot r^{\prime}(\check{x}+y)\right) y=\left(V^{-T} \otimes W^{*}\right) \Delta^{-1} \Omega\left(V^{\top} \otimes W^{-*}\right) y$, where

$$
\begin{aligned}
\Omega= & I_{n} \otimes \Lambda^{*}-I_{n} \otimes\left(W(A-S(\check{X}+Y)) W^{-1}\right)^{*}+ \\
& \Lambda^{T} \otimes I_{n}-\left(V^{-1}(A-S(\check{X}+Y)) V\right)^{T} \otimes I_{n}
\end{aligned}
$$

1: Enclose $\boldsymbol{Z Z}=\boldsymbol{I}_{W}^{*} \cdot \boldsymbol{Y} \cdot V$,
2: Enclose $\boldsymbol{P}=W \cdot(\boldsymbol{A}-\boldsymbol{S} \cdot(\check{X}+\boldsymbol{Y})) \cdot \boldsymbol{I}_{W}$.
3: Enclose $\boldsymbol{Q}=\boldsymbol{I} V \cdot(A-S \cdot(\check{X}+\boldsymbol{Y})) \cdot V)$.
4: Enclose $\boldsymbol{E}=(\Lambda-\boldsymbol{P})^{*} \cdot \mathbf{Z Z}+\boldsymbol{Z Z} \cdot(\Lambda-\boldsymbol{Q})$.
5: Enclose $\boldsymbol{N}=\boldsymbol{E} . / D$.
6: Enclose $\boldsymbol{U}=\boldsymbol{W}^{*} \cdot \boldsymbol{N} \cdot \boldsymbol{I}_{V}$
7: Output U.
Cost of Alg. 2 is also cubic.

Main Algorithm

1: Use a floating point algorithm to get an approximate solution \check{X} of the Riccati equation (1).
2: Use a floating point algorithm to compute V, W and Λ in the spectral decomposition of $A-S \check{X}$.
3: Put $D \in \mathbb{C}^{n \times n}$ s.t. column d_{j} of D is $\operatorname{diag}(\bar{\Lambda})+(\Lambda)_{j j}(1, \ldots, 1)^{T}$.
4: Compute interval matrices $I_{W} \ni W^{-1}$ and $I_{V} \ni V^{-1}$.
5: Use Alg. 1 to compute an enclosure \boldsymbol{Z} for $-R \cdot r(\check{x})$.
6: Put $\boldsymbol{X}=\boldsymbol{Z}$ and $k=0$
\{Prepare loop\}
repeat
Put $\boldsymbol{Y}=\square(0, \boldsymbol{X} \cdot[1-\varepsilon, 1+\varepsilon])$, increment $k \quad\{\varepsilon$-inflation $\}$
Use Alg. 2 to compute an interval matrix \boldsymbol{U} such that \boldsymbol{u} is an enclosure for the set $\left\{\left(I_{n^{2}}-R \cdot r^{\prime}(\check{x}+y)\right) y: y \in \boldsymbol{y}\right\}$
10: \quad Enclose $\boldsymbol{X}=\boldsymbol{Z}+\boldsymbol{U}$
11: until ($\boldsymbol{X} \subseteq$ int \boldsymbol{Y} or $k=15$)
12: if $\boldsymbol{X} \subseteq$ int \boldsymbol{Y} then \{successful termination\}
13: \quad output $\boldsymbol{X X}=\check{X}+\boldsymbol{X}$
14: end if

Outline

(1) Motivation

- The Riccati Equation and Some Basic Tools
- Our Main Problem
- Previous Works
(2) Our Results/Contribution
- Main Results
- Algorithms
- Numerical Results

Example 16 (well-conditioned) from benchmark examples for Riccati equations by Benner, Laub and Mehrmann, 1995 ARESOLV from Matlab's Robust Control Toolbox used for computing \check{X}

n	χ	Our Algorithm double prec. res.		
	time	time	k	$\begin{aligned} & \text { mrp } \\ & \text { arp } \end{aligned}$
100	$2.3 \cdot 10^{-1}$	$7.0 \cdot 10^{-1}$	1	$\begin{aligned} & \hline 4.0 \cdot 10^{-1} \\ & 8.8 \cdot 10^{-7} \end{aligned}$
200	$4.6 \cdot 10^{-1}$	1.1	1	$\begin{aligned} & 8.4 \cdot 10^{-1} \\ & 1.9 \cdot 10^{-6} \end{aligned}$
400	3.9	8.8	1	$\begin{aligned} & 8.4 \cdot 10^{-1} \\ & 3.0 \cdot 10^{-6} \end{aligned}$
800	$3.0 \cdot 10^{+1}$	$6.4 \cdot 10^{+1}$	1	$\begin{aligned} & 9.6 \cdot 10^{-1} \\ & 2.9 \cdot 10^{-6} \end{aligned}$

Source: Benchmark Examples for Riccati Equations by Benner, Laub and Mehrmann, 1995

Example 5: A 9th-order continuous state space model of a tabular ammonia reactor
$n=9, t_{\check{X}}=0.01 \mathrm{sec} ., t_{\boldsymbol{X}}=0.05 \mathrm{sec}$.
$m r p=1.1 \times 10^{-12}, \operatorname{arp}=5.2 \times 10^{-14}$.
Example 19: A model of 35 coupled springs, dashpots and
masses
$n=140, t_{\check{x}}=2.2 \mathrm{sec}$.
${ }^{t} \boldsymbol{X}=5.5 \mathrm{sec}$. after 7 iterations
$m r p=3.4 \times 10^{-9}, \operatorname{arp}=7.2 \times 10^{-13}$

Source: Benchmark Examples for Riccati Equations by Benner, Laub and Mehrmann, 1995

Example 5: A 9th-order continuous state space model of a tabular ammonia reactor
$n=9, t_{\check{X}}=0.01 \mathrm{sec} ., t_{\boldsymbol{X}}=0.05 \mathrm{sec}$.
$m r p=1.1 \times 10^{-12}, a r p=5.2 \times 10^{-14}$.
Example 19: A model of 35 coupled springs, dashpots and masses
$n=140, t_{\check{\chi}}=2.2 \mathrm{sec}$.
${ }^{t} \boldsymbol{X}=5.5 \mathrm{sec}$. after 7 iterations
$m r p=3.4 \times 10^{-9}, \operatorname{arp}=7.2 \times 10^{-13}$.

Source: Benchmark Examples for Riccati Equations by Benner, Laub and Mehrmann, 1995

Example 17: A feedback controller
$n=21, t_{\check{\chi}}=0.01 \mathrm{sec}$.
Our algorithm fails because V is ill-conditioned
$\kappa_{V}=2.4 \times 10^{+9}$,
condition number of Riccati equation: $\kappa_{\text {Ricc }}=1.3 \times 10^{+9}$.

Summary

- Reduction of the cost for verification to cubic via spectral decomposition of the closed loop matrix \Rightarrow comparable to the cost for getting \check{X}.
- Algorithm uses matrix-matrix operations \Rightarrow fast in INTLAB.
- Algorithm will not succeed if the eigenvector matrix V is ill-conditioned.
- Outlook
- Verify stabilizing property of a solution to the CARE (1)
- Try recent algorithms for multiplication of interval matrices (by Rump \& Ozaki, Ogita, Oishi \& Nguyen, Revol and others)
- Discrete-time Riccati equations

Questions?
Comments ?
Or suggestions ?

