A statistical inference model for the dynamic range estimation of LTI systems

Laurent-Stéphane Didier Alexandre Chapoutot Fanny Villers

September 24, 2012

Context

Introduction

Embedded software

- numerical filter (FIR, IIR, etc.)
- control applications
- executed on limited hardware (e.g. no FPU)

Development of embedded systems

- high-level design describes algorithms with floating-point numbers
- implementation is adapted to take into account hardware limitations

Transformation of floating-point programs into fixed-point equivalent ones

- Evaluation of the range
- Evaluation of the numerical precision

Motivation

Our goal:

- Define a method to quickly evaluate the range of the variables.
- Compute the probability of overflow for tolerant applications

Our new method is:

- applied on **design level** (Simulink models)
- assumes that the studied designs are simulable
- allows "black boxes"
- based on statistical models
- defined to estimate dynamic range of floating-point variables

Theoretical approach Results

Previous attempts

Evaluate the behaviour of internal data using input stimuli samples and simulations

Simple method:

- Simulate the model several times with a set of simulations data
- Catch the minima and the maxima
- Keep the smallest minimum and the greatest maximum
- Dependent from the set of simulation

Kim, Kum and Sung method:

- Similar to the simple method; evaluation of statistical parameters
- Examine the mean μ , the standard deviation σ and the kurtosis k
- Statistical estimation of the radius R of the range
 - For one simulation

$$R = |\mu| + (k+4)\sigma$$

For several simulations

$$R = |\mu_{max} + 0.1(\mu_{max} - \mu_{min}) + (k_{max} + 0.1(k_{max} - k_{min}) + 4) \times (\sigma_{max} + 0.1(\sigma_{max} - \sigma_{min}))$$

What is the statistical model?

Suppose we have an i.i.d. sequence of random variables, X_1 , X_2 , X_3 , \cdots . Let $M_n = max(X_1, ..., X_n)$

If there are parameters $a_n > 0$, n and a non-degenerate probability distribution G(x) such that

$$P\left(\frac{M_n-b_n}{a_n}\leq x\right)\to G(x)$$

then G is the Generalized Extrem Value Distribution.

GEVD cumulative function is:

$$G(x; \mu, \sigma, \xi) = exp\left\{-\left[1 + \xi\left(\frac{x - \mu}{\sigma}\right)\right]^{-1/\xi}\right\}$$

with,

- μ is the **location** parameter
- σ is the **scale** parameter
- ξ is the **shape** parameter

What are we looking at?

Inferential statistics: estimates numerical characteristics about a population

Our approach:

- \bullet perform n simulations of length d with random inputs
- collect the **maximum** of each variable from the n random simulations S_i

$$\begin{split} & M^{(1)} = \max \left(S_1^{(1)}, S_2^{(1)}, \dots, S_d^{(1)} \right) \\ & M^{(2)} = \max \left(S_1^{(2)}, S_2^{(2)}, \dots, S_d^{(2)} \right) \\ & \vdots & = & \vdots \\ & M^{(n)} = \max \left(S_1^{(n)}, S_2^{(n)}, \dots, S_d^{(n)} \right) \end{split}$$

roduction Theoretical approach LTI ARM A model Results Conclusion

How can we verify the hypothesis?

Graphical technique to assess if a data set follows a given distribution. Here our data set is the $(M^{(1)}, M^{(2)}, \dots, M^{(n)})$

The data are plotted against a theoretical distribution: the points should form a straight line

Given by every statistical tools such as R.

roduction Theoretical approach LTI ARM A model Results Conclusion

How are we using the statistical model?

We want to compute z_p such that $P\left(M>z_p\right)=p$ i.e. the value z_p which will be exceeded by the maximum M with a probability p.

Can be computed with:

$$z_p = egin{cases} \mu + rac{\sigma}{\xi} ig(1 - ig(-\log(1-p) ig)^{-\xi} ig) & ext{if } \xi
eq 0 \ \mu + \sigma \logig(-\log(1-p) ig) & ext{otherwise} \end{cases}$$

• With $\hat{\mu}$, $\hat{\sigma}$ and $\hat{\xi}$ an estimation of the GEVD parameters, we compute an estimation \hat{z}_p

A typical LTI system

Uses previously computed results

$$y(n) = \frac{1}{a_0} \left(\sum_{i=0}^{P} b_i x(n-i) - \sum_{j=0}^{Q} a_j y(n-j) \right)$$

Infinite Impulse Response Filter

$$y(n) = \frac{1}{a_0} \left(\sum_{i=0}^{P} b_i x(n-i) - \sum_{j=0}^{Q} a_j y(n-j) \right)$$

Remarks

- Not really independent
- Work if the dependency is "limited"
- Evaluate the impact of the dependency
- Modelize LTI systems with ARMA stochastic process.

ARMA model

Auto Regressive/ Moving Average

A time series x_t is ARMA(p, q) if it is stationary and

$$x_t = \underbrace{\phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + \omega_t}_{\text{Autoregressive part}} + \underbrace{\theta_1 \omega_{t-1} + \dots + \theta_q \omega_{t-q}}_{\text{Moving Average part}}$$

where θ_i and ϕ_i are constants, ω_i are white noises.

 For the range estimation, inputs x(n) of the LTI system are white noises.

$$y(n) = \frac{1}{a_0} \left(\sum_{i=0}^{P} b_i x(n-i) - \sum_{j=0}^{Q} a_j y(n-j) \right)$$

• We consider the output is at least weak stationary

- (□) (□) (巨) (巨) (E) の(C)

Weak stationarity

Definition

A time serie is weakly stationary if:

- its mean μ_t is constant and does not depend on t
- the autocovariance function $\gamma(s,t) = E[(x_s \mu_s)(x_t \mu_t)]$ only depends only t s.
- We consider on $\gamma(t+h,t)$ and note $\gamma(h)$.
- We focus on the autocorrelation function

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)}$$

• Gives an idea on what is the practical length of the dependency

Autocorrelation function

For t > 5, there is no impact of x(n - t) on the value x(n)

IIR results

Figure: Histogram, density function and pplot at output 1

Conclusion

We have presented a new method:

- to estimate range of floating-point variables
- with a statistical models
- we showed that statistical models can be used to infer properties on LTI systems
- we show how to estimate the impact of previously computed values

Future works

- Estimate the minimal number of simulation
- Estimate the minimal length of simulations
- A model for non LTI systems

Remark on the number of simulations

How many simulations are needed?

Depends on what is looked for:

- The number of digits needed for coding the maximum: several tens
- The value of the maximum bound: several hundreds

oduction Theoretical approach LTI ARM A model Results **Conclusion**

IIR results

Figure : Evolution of the estimation of shape, position and scale parameters at output ${\bf 1}$

Figure: Evolution of the estimation of shape, position and scale parameters at output 3