Heuristic based approach for Novosibirsk traffic light scheduling

Ivan Davydov, Daniil Tolstykh, Polina Kononova, Irina Legkih

Sobolev Institute of Mathematics

Introduction

Simulation

Simulation

Solution representation

Genetic algorithm

Schema of genetic algorithm for minimization problem:

1. Chose an initial population $P=\left\{X_{1}, \ldots, X_{k}\right\}$ and keep a record value $f^{*}=\min f\left(X_{i}\right)$.
2. While stop criterion is not satisfied do the following:

- Chose two parents $X_{i_{1}}$ and $X_{i_{2}}$ from population.
- Apply a crossover operator to $X_{i_{1}}$ and $X_{i_{2}}$, obtain a new solution X^{\prime}.
- Apply a mutation operator to X^{\prime}, obtain a new solution $X^{\prime \prime}$.
- Doing a local descend from $X^{\prime \prime}$, obtain a new solution $X^{\prime \prime \prime}$.
- If $f\left(X^{\prime \prime \prime}\right)<f^{*}$, then update a record $f^{*}:=f\left(X^{\prime \prime \prime}\right)$.
- Add $X^{\prime \prime \prime}$ to population and delete the worst one.

Objective functions

- Average time that the vehicles spent standing involuntarily (Waiting time)
- Average speed of the vehicles entered to simulation (average route length divided by average trip duration)

$$
\boldsymbol{F}=\frac{T T+S W+(N V * S T)}{V^{2}+P},
$$

TT - global trip time,
ST - simulation time,
SW - the time vehicles were obliged to stop and wait,
V and NV - the numbers of vehicles that reached and did not reach their destinations resp., P expresses proportion of colors in each phase j of all the intersections i: $P-\sum_{i} \sum_{j} s_{i j} \frac{G_{i j}}{\mathrm{C}_{i j}}$ with state duration s_{ij}, number G_{ij} of traffic lights in green and r_{ij} of traffic lignts in rea

* J.García-Nieto, E.Alba, A.Carolina Olivera. Swarm intelligence for traffic light scheduling: Application to real urban areas. Engineering Applications of Artificial Intelligence, 2012.

Objective functions

Behavior of Waiting Time objective function

Rehavior of objertive function Γ

Objective functions

Behavior of Average Speed objective function

Objective function	Waiting Time	Av. Speed	F
Solution with the best Waiting Time	$\mathbf{6 3 . 1 4}$	5.87	14.40
Solution with the best Av.Speed	64.64	$\mathbf{6 . 1 1}$	40.97
Solution with the best value of F	95.04	3.97	2.08

Parameters of the algorithm

Initial population:

- Random vectors
- Local optima (random vectors + local descend)

Parents selection:

- The best individual in population with some other random one.
- Two parents chosen under geometric distribution with $p=0.3$ from the population sorted in ascending order of objective function value.

Crossover operator:

- One of parents coordinates
- Random number between two parents coordinates
- Mean value of parents coordinates

Parameters of the algorithm

Initial population

Objective function	Waiting Time	Av. Speed	F
Initial population from random vectors	66.47	5.97	2.33
Initial population from local optima	65.91	5.94	2.49

Parents selection

Objective function	Waiting Time	Av. Speed	F
Leader and random	66.07	5.92	2.46
Geometric distribution	66.31	5.99	2.36

Crossover operator

Objective function	Waiting Time	Av. Speed	F
Random one	64.63	5.98	2.34
Random between	66.53	5.89	2.51
Mean value	67.41	6.00	2.38

Population degeneration

Experiments set	Initial aver- age distance	Average dis- tance after 15th itcration	Final average distance
All	1190.11	669.12	122.27
Waiting Time obj.function	1174.69	640.98	378.13
Av.Speed obj.function	1206.64	661.23	379.70
Objective function F	1189.90	705.16	508.98
Init. popul. from local optima	1186.20	714.14	522.63
Random init. population	1194.62	624.11	321.92
Select leader and random	1193.87	701.97	451.69
Select under geom. distr.	1186.94	636.28	392.85
Crossover "random one"	1196.81	756.51	494.33
Crossover "random between"	1192.78	619.30	379.71
Crossover "mean"	1181.64	631.56	392.77

Final results

Fitness	Vehicles	Schedule	Algorithm
813	2462	$[9,60,13,30,52,29,8,22,44,20]$	GA+LS
822	2448	$[10,60,8,36,60,39,17,42,41,27]$	GA+LS
827	2443	$[10,60,18,25,32,18,8,42,53,25]$	GA+LS
818	2450	$[11,60,21,22,60,33,22,43,41,26]$	GA
819	2456	$[8,60,24,20,55,49,8,32,46,32]$	GA
822	2459	$[8,60,25,19,60,38,11,60,36,25]$	GA
1683	1822	$[11,22,57,33,27,37,8,40,53,29]$	initial

Thank you for attention!

Any questions?

