Improved Exact Algorithm for the Capacitated Facility Location Problem on a Line Graph

Edward Gimadi ${ }^{1,2}$, Alexandr Shtepa ${ }^{1}$, Oxana Tsidulko ${ }^{1,2}$

${ }^{1}$ Department of Mechanics and Mathematics, Novosibirsk State University, Russian Federation
${ }^{2}$ Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation

26th of August, 2019

Capacitated Facility Location Problem (general case)

Given:

- a set M of possible facility locations $(|M|=m)$,
- a set N of clients ($|N|=n$);
- f_{i} is an opening cost for facility i,
- a_{i} is a capacity of facility i;
- b_{j} is an integer demand of client j;
- $g_{i j}$ is a transportation cost of delivering a unit of product from facility i to client j.

Find: a subset of facilities $M^{\prime} \subseteq M$ to open such that:

$$
\begin{gathered}
\sum_{i \in M^{\prime}} f_{i}+\sum_{j \in N} \sum_{i \in M^{\prime}} b_{j} g_{i j} x_{i j} \rightarrow \min \\
\sum_{i \in M^{\prime}} x_{i j}=1, j \in N \\
\sum_{j \in N} b_{j} x_{i j} \leq a_{i}, i \in M^{\prime} \\
x_{i j} \geq 0
\end{gathered}
$$

- possible facility location
- - client

Capacitated Facility Location Problem (general case)

Given:

- a set M of possible facility locations $(|M|=m)$,
- a set N of clients ($|N|=n$);
- f_{i} is an opening cost for facility i,
- a_{i} is a capacity of facility i;
- b_{j} is an integer demand of client j;
- $g_{i j}$ is a transportation cost of delivering a unit of product from facility i to client j.

Find: a subset of facilities $M^{\prime} \subseteq M$ to open such that:

$$
\begin{gathered}
\sum_{i \in M^{\prime}} f_{i}+\sum_{j \in N} \sum_{i \in M^{\prime}} b_{j} g_{i j} x_{i j} \rightarrow \min \\
\sum_{i \in M^{\prime}} x_{i j}=1, j \in N \\
\sum_{j \in N} b_{j} x_{i j} \leq a_{i}, i \in M^{\prime} \\
x_{i j} \geq 0
\end{gathered}
$$

Types of Capacitated Facility Location Problem

Metric CFLP

Transportation costs satisfy triangle inequality. (The transportation cost from i to j is defined according to the shortest path distance in network graph).

Types of Capacitated Facility Location Problem

Metric CFLP

Transportation costs satisfy triangle inequality. (The transportation cost from i to j is defined according to the shortest path distance in network graph).

Single allocation CFLP

A demand of a client must be served by only one facility.
For the allocation variables $x_{i j}$: $x_{i j} \in\{0,1\}$.

Multiple allocation CFLP

A client can be served by multiple facilities simultaneously.
For the allocation variables $x_{i j}$: $0 \leq x_{i j} \leq 1$.

Types of Capacitated Facility Location Problem

Metric CFLP

Transportation costs satisfy triangle inequality. (The transportation cost from i to j is defined according to the shortest path distance in network graph).

Single allocation CFLP

A demand of a client must be served by only one facility.
For the allocation variables $x_{i j}$: $x_{i j} \in\{0,1\}$.

Multiple allocation CFLP

A client can be served by multiple facilities simultaneously.
For the allocation variables $x_{i j}: 0 \leq x_{i j} \leq 1$.

```
Statement
All variants of the problem are NP-hard.
```


Capacitated Facility Location Problem on a Line Graph

Given:

- a line graph $G=(V, E), V=M \uplus N$,
- M is a set of possible facility locations $(|M|=m)$,
- N is a set of clients $(|N|=n)$;
- f_{i} is an opening cost for facility i,
- a_{i} is a capacity of facility i;
- b_{j} is an integer demand of client j;
- c_{e} is a cost of transporting a unit of product along edge $e \in E$,
- $P_{i j}$ is a (shortest) path between a facility i at vertex number v_{i} and a client j at vertex number v_{j}
- $g_{i j}=\sum_{e \in P_{i j}} c_{e}$ is a transportation cost of delivering a unit of product from facility i to client j.

Capacitated Facility Location Problem on a Line Graph

Find: which facilities to open such that:

$$
\begin{gather*}
\sum_{i \in M} f_{i} y_{i}+\sum_{i \in M} \sum_{j \in N} b_{j} g_{i j} x_{i j} \rightarrow \min _{y_{i}, x_{i j}} \tag{1}\\
\sum_{j \in N} b_{j} x_{i j} \leq a_{i} y_{i}, \quad i \in M,|M|=m, \tag{2}\\
\sum_{i \in M} x_{i j}=1, \quad j \in N,|N|=n, \tag{3}\\
x_{i j} \geq 0, y_{i} \in\{0 ; 1\}, \tag{4}
\end{gather*}
$$

where
$x_{i j}$ is a share of the demand of a client j at vertex number v_{j} served by a facility i at vertex number v_{i},
$y_{i}= \begin{cases}1, & \text { if one opens a facility } i \in M, \\ 0, & \text { otherwise. }\end{cases}$

Capacitated Facility Location Problem on a Line Graph

Find: which facilities to open such that:

$$
\begin{gather*}
\sum_{i \in M} f_{i} y_{i}+\sum_{i \in M} \sum_{j \in N} b_{j} g_{i j} x_{i j} \rightarrow \min _{y_{i}, x_{i j}} \tag{1}\\
\sum_{j \in N} b_{j} x_{i j} \leq a_{i} y_{i}, \quad i \in M,|M|=m, \tag{2}\\
\sum_{i \in M} x_{i j}=1, \quad j \in N,|N|=n, \tag{3}\\
x_{i j} \geq 0, y_{i} \in\{0 ; 1\}, \tag{4}
\end{gather*}
$$

where
$x_{i j}$ is a share of the demand of a client j at vertex number v_{j} served by a facility i at vertex number v_{i},
$y_{i}= \begin{cases}1, & \text { if one opens a facility } i \in M, \\ 0, & \text { otherwise. }\end{cases}$

Statement

CFLP is NP-hard even on a line graph, since in the case of zero transportation costs and only one client it contains the MINIMIZATION KNAPSACK problem.

Applications of CFLP on a Line Graph

- Rest area location. Cars enter a highway at different points. What is the smallest number of rest areas that are needed along the highway to ensure that each car can access a rest area within a given distance from its point of entry?
- Transformer location. A high-voltage power line runs through rural townships. To limit power losses, step-down transformers must be installed within certain distances of the townships. What is the smallest number of transformers required to service all communities?

Our contributions

Known result: [Mirchandani et al., 1996]

The multiple allocation CFLP on a line graph can be solved by a dynamic programming pseudopolynomial-time algorithm with running-time

$$
O\left(m B \min \left\{a_{\max }, B\right\}\right),
$$

where $B=\sum_{j \in N} b_{j}$ is the total demand and $a_{\max }$ is the maximum facility capacity.

Our contributions

Known result: [Mirchandani et al., 1996]

The multiple allocation CFLP on a line graph can be solved by a dynamic programming pseudopolynomial-time algorithm with running-time

$$
O\left(m B \min \left\{a_{\max }, B\right\}\right),
$$

where $B=\sum_{j \in N} b_{j}$ is the total demand and $a_{\max }$ is the maximum facility capacity.

We present $\mathbf{2}$ modifications of this algorithm:

1. First modification: using binary heap, we improve time complexity to $O\left(m B \log \left(\min \left\{a_{\max }, B\right\}\right)\right)$.
2. Second modification: using algorithm from [Aggarwal et al., 1987], we improve time complexity to $O(m B)$.

Reduction to CFLP with unit demands:

The algorithm from [Mirchandani et al., 1996] starts by reducing the multiple allocation CFLP with n clients to the multiple allocation CFLP with $B=\sum_{j \in N} b_{j}$ clients, each of unit demand.

- possible facility location
- client

Notation

For each facility i let ℓ_{i} and r_{i} be the lowest and the highest client indices such that facility i has enough capacity to serve all the clients of the segments $\left[\ell_{i}, v_{i}\right]$ and $\left[v_{i}, r_{i}\right]$, respectively.

Notation

For each facility i let ℓ_{i} and r_{i} be the lowest and the highest client indices such that facility i has enough capacity to serve all the clients of the segments $\left[\ell_{i}, v_{i}\right]$ and $\left[v_{i}, r_{i}\right]$, respectively.

Remark

A facility of unbounded capacity can be considered as a facility of capacity B. Let $\widetilde{a}_{i}=\min \left\{a_{i}, B\right\}$ be the revised facility capacities, $i=1, \ldots, m$.

Notation

Let $w_{i}(k, j), k<j$, be the total transportation costs required to serve all the clients of the segment (k, j] from the facility $i: w_{i}(k, j)=\sum_{t=k}^{j} g_{i t} b_{t}$.

Notation

Let $w_{i}(k, j), k<j$, be the total transportation costs required to serve all the clients of the segment (k, j] from the facility $i: w_{i}(k, j)=\sum_{t=k}^{j} g_{i t} b_{t}$.

Remark

Using data structures that can be precomputed in time $O(B+m)$, the values $w_{i}(k, j)$ can be found in constant time for any given $1 \leq i \leq m, 1 \leq k<j \leq B$ by the following formula.

$$
w_{i}(k, j)= \begin{cases}D(j)-D(k)-d(i)\left(v_{j}-v_{k}\right), & \text { if } v_{i} \leq v_{k}<v_{j}, \tag{5}\\ D(k)+D(j)-2 D(i)-d(i)\left(v_{k}+v_{j}-2 v_{i}\right), & \text { if } v_{k}<v_{i}<v_{j}, \\ D(k)-D(j)+d(i)\left(v_{j}-v_{k}\right), & \text { if } v_{k}<v_{j} \leq v_{i},\end{cases}
$$

where the partial sums $d(t)=\sum_{j=1}^{t} c_{(j-1, j)}$ and $D(t)=\sum_{j=1}^{t} d(j)$ for all $t=1, \ldots, B+m$ can be computed recursively in total time $O(B+m)$.

Notation

Let $w_{i}(k, j), k<j$, be the total transportation costs required to serve all the clients of the segment (k, j] from the facility $i: w_{i}(k, j)=\sum_{t=k}^{j} g_{i t} b_{t}$.

Remark

Using data structures that can be precomputed in time $O(B+m)$, the values $w_{i}(k, j)$ can be found in constant time for any given $1 \leq i \leq m, 1 \leq k<j \leq B$ by the following formula.

$$
w_{i}(k, j)= \begin{cases}D(j)-D(k)-d(i)\left(v_{j}-v_{k}\right), & \text { if } v_{i} \leq v_{k}<v_{j}, \tag{5}\\ D(k)+D(j)-2 D(i)-d(i)\left(v_{k}+v_{j}-2 v_{i}\right), & \text { if } v_{k}<v_{i}<v_{j}, \\ D(k)-D(j)+d(i)\left(v_{j}-v_{k}\right), & \text { if } v_{k}<v_{j} \leq v_{i},\end{cases}
$$

where the partial sums $d(t)=\sum_{j=1}^{t} c_{(j-1, j)}$ and $D(t)=\sum_{j=1}^{t} d(j)$ for all $t=1, \ldots, B+m$ can be computed recursively in total time $O(B+m)$.

Remark

All the values r_{i} and ℓ_{i} for $i=1, \ldots, m$ can be found in time $O(m+B)$.

Dynamic Programming Algorithm

Algorithm from [Mirchandani et al., 1996].

Let $S(i, j)$ be the optimum value of a subproblem in which the first j clients on the line are optimally served by a subset of the first i facilities.

For all $i=1, \ldots, m, j=1, \ldots, B$

$$
S(i, j)= \begin{cases}\min \left\{S(i-1, j), f_{i}+\min _{\max \left\{j-\widetilde{a}_{i}, \ell_{i}\right\} \leq k \leq j}\{ \right. & \left.\left.S(i-1, k)+w_{i}(k, j)\right\}\right\}, \tag{6}\\ S(i-1, j), & \text { if } \ell_{i} \leq j \leq r_{i}, \\ \text { otherwise. }\end{cases}
$$

Time complexity: $O\left(m B \min \left\{a_{\max }, B\right\}\right)$.

The First Modification: Using Binary Heap

Definition

A minimum binary heap is a complete binary tree, in which the value of each node is greater than or equal to the value of its parent, with the minimum-value element at the root.

If q is the number of nodes in a binary heap, then each of the operations: deleting an element, adding a new element and restoring the shape property of a heap can be done in $O(\log q)$ time, while finding the minimum element takes $O(1)$ time.

Theorem

The multiple allocation CFLP on a line graph can be solved using binary heap in $O\left(m B \log \left(\min \left\{a_{\max }, B\right\}\right)\right)$ time.

The Second Modification: $O(m B)$ Time Algorithm

$$
S(i, j)= \begin{cases}\min \left\{S(i-1, j), f_{i}+\min _{\max \left\{j-\widetilde{a}_{i}, \ell_{i}\right\} \leq k \leq j}\{ \right. & \left.\left.S(i-1, k)+w_{i}(k, j)\right\}\right\}, \\ S(i-1, j), & \text { if } \ell_{i} \leq j \leq r_{i}, \\ \text { otherwise. }\end{cases}
$$

The Second Modification: $O(m B)$ Time Algorithm

$$
S(i, j)= \begin{cases}\min \left\{S(i-1, j), f_{i}+\min _{\max \left\{j-\bar{a}_{i}, \ell_{i}\right\} \leq k \leq j}\{ \right. & \left.\left.S(i-1, k)+w_{i}(k, j)\right\}\right\}, \\ S(i-1, j), & \text { if } \ell_{i} \leq j \leq r_{i}, \\ \text { otherwise. }\end{cases}
$$

Consider the i-th row of table S. To compute element $S(i, j)$ one needs to find $\min _{1 \leq k \leq B} A_{i}(k, j)$, where

$$
A_{i}(k, j)= \begin{cases}S(i-1, k)+w_{i}(k, j), & \text { if } \max \left\{j-\widetilde{a}_{i}, \ell_{i}\right\} \leq k \leq j \tag{7}\\ \infty, & \text { otherwise }\end{cases}
$$

The Second Modification: $O(m B)$ Time Algorithm

$$
S(i, j)= \begin{cases}\min \left\{S(i-1, j), f_{i}+\min _{\max \left\{j-\bar{a}_{i}, \ell_{i}\right\} \leq k \leq j}\{ \right. & \left.\left.S(i-1, k)+w_{i}(k, j)\right\}\right\}, \\ S(i-1, j), & \text { if } \ell_{i} \leq j \leq r_{i}, \\ \text { otherwise. }\end{cases}
$$

Consider the i-th row of table S. To compute element $S(i, j)$ one needs to find $\min _{1 \leq k \leq B} A_{i}(k, j)$, where

$$
A_{i}(k, j)= \begin{cases}S(i-1, k)+w_{i}(k, j), & \text { if } \max \left\{j-\widetilde{a}_{i}, \ell_{i}\right\} \leq k \leq j \tag{7}\\ \infty, & \text { otherwise }\end{cases}
$$

We will show how to find minimum element in each column of A_{i} in $O(B)$ time.

The Second Modification: $O(m B)$ Time Algorithm

Definition

An $\alpha \times \beta$-matrix A with real entries is monotone in columns, if for every pair of columns with indices $j_{0}<j_{1}$, it holds that $i\left(j_{0}\right) \leq i\left(j_{1}\right)$, where $i(j)$ is the smallest row index i, such that element $A(i, j)$ equals to the minimum value in the j-th column of A. Matrix A is said to be totally monotone in columns, if every 2×2 submatrix of A is monotone.

The Second Modification: $O(m B)$ Time Algorithm

Definition

An $\alpha \times \beta$-matrix A with real entries is monotone in columns, if for every pair of columns with indices $j_{0}<j_{1}$, it holds that $i\left(j_{0}\right) \leq i\left(j_{1}\right)$, where $i(j)$ is the smallest row index i, such that element $A(i, j)$ equals to the minimum value in the j-th column of A. Matrix A is said to be totally monotone in columns, if every 2×2 submatrix of A is monotone.

Statement [Aggarwal et al., 1987].

Let an $\alpha \times \beta$-matrix A be totally monotone in columns. There exists an algorithm [Aggarwal et al., 1987] that finds the minimum entry in each column of A in $O(\alpha+\beta)$ time.

The Second Modification: $O(m B)$ Time Algorithm

Definition

An $\alpha \times \beta$-matrix A with real entries is monotone in columns, if for every pair of columns with indices $j_{0}<j_{1}$, it holds that $i\left(j_{0}\right) \leq i\left(j_{1}\right)$, where $i(j)$ is the smallest row index i, such that element $A(i, j)$ equals to the minimum value in the j-th column of A. Matrix A is said to be totally monotone in columns, if every 2×2 submatrix of A is monotone.

Statement [Aggarwal et al., 1987].

Let an $\alpha \times \beta$-matrix A be totally monotone in columns. There exists an algorithm [Aggarwal et al., 1987] that finds the minimum entry in each column of A in $O(\alpha+\beta)$ time.

Lemma 1.

For each $1 \leq i \leq m$, the $B \times B$-matrix A_{i} defined by (7) is totally monotone in columns.

Theorem

The multiple allocation CFLP on a line graph can be solved in $O(m B)$ time.

Proof.

An improved exact algorithm for the multiple allocation CFLP on a line works as follows.

1. We reduce the multiple allocation CFLP to the multiple allocation CFLP with unit demands as in [Mirchandani et al., 1996].

Theorem

The multiple allocation CFLP on a line graph can be solved in $O(m B)$ time.
Proof.
An improved exact algorithm for the multiple allocation CFLP on a line works as follows.

1. We reduce the multiple allocation CFLP to the multiple allocation CFLP with unit demands as in [Mirchandani et al., 1996].
2. We compute the sums from Remark 1 in $O(m+B)$ time and the values l_{i}, r_{i} for $1 \leq i \leq m$, so that we could further calculate any element $w_{i}(k, j)$ in $O(1)$ time.

Theorem

The multiple allocation CFLP on a line graph can be solved in $O(m B)$ time.
Proof.
An improved exact algorithm for the multiple allocation CFLP on a line works as follows.

1. We reduce the multiple allocation CFLP to the multiple allocation CFLP with unit demands as in [Mirchandani et al., 1996].
2. We compute the sums from Remark 1 in $O(m+B)$ time and the values l_{i}, r_{i} for $1 \leq i \leq m$, so that we could further calculate any element $w_{i}(k, j)$ in $O(1)$ time.
3. For each $i=1, \ldots, m$ we compute the i-th row of table S defined by (6) as follows:

Theorem

The multiple allocation CFLP on a line graph can be solved in $O(m B)$ time.
Proof.
An improved exact algorithm for the multiple allocation CFLP on a line works as follows.

1. We reduce the multiple allocation CFLP to the multiple allocation CFLP with unit demands as in [Mirchandani et al., 1996].
2. We compute the sums from Remark 1 in $O(m+B)$ time and the values l_{i}, r_{i} for $1 \leq i \leq m$, so that we could further calculate any element $w_{i}(k, j)$ in $O(1)$ time.
3. For each $i=1, \ldots, m$ we compute the i-th row of table S defined by (6) as follows:
4. In a $B \times B$-matrix A_{i} defined as (7), which is totally monotone in columns, according to Lemma 1 , in time $O(B)$ we obtain minimum entries of each column of matrix A_{i} by applying algorithm from [Aggarwal et al., 1987].

Theorem

The multiple allocation CFLP on a line graph can be solved in $O(m B)$ time.

Proof.

An improved exact algorithm for the multiple allocation CFLP on a line works as follows.

1. We reduce the multiple allocation CFLP to the multiple allocation CFLP with unit demands as in [Mirchandani et al., 1996].
2. We compute the sums from Remark 1 in $O(m+B)$ time and the values l_{i}, r_{i} for $1 \leq i \leq m$, so that we could further calculate any element $w_{i}(k, j)$ in $O(1)$ time.
3. For each $i=1, \ldots, m$ we compute the i-th row of table S defined by (6) as follows:
4. In a $B \times B$-matrix A_{i} defined as (7), which is totally monotone in columns, according to Lemma 1, in time $O(B)$ we obtain minimum entries of each column of matrix A_{i} by applying algorithm from [Aggarwal et al., 1987].
5. Having all the minimum entries of each column of A_{i} been calculated, we can compute all elements of the i-th row of S in additional $O(B)$ time.

Theorem

The multiple allocation CFLP on a line graph can be solved in $O(m B)$ time.

Proof.

An improved exact algorithm for the multiple allocation CFLP on a line works as follows.

1. We reduce the multiple allocation CFLP to the multiple allocation CFLP with unit demands as in [Mirchandani et al., 1996].
2. We compute the sums from Remark 1 in $O(m+B)$ time and the values l_{i}, r_{i} for $1 \leq i \leq m$, so that we could further calculate any element $w_{i}(k, j)$ in $O(1)$ time.
3. For each $i=1, \ldots, m$ we compute the i-th row of table S defined by (6) as follows:
4. In a $B \times B$-matrix A_{i} defined as (7), which is totally monotone in columns, according to Lemma 1, in time $O(B)$ we obtain minimum entries of each column of matrix A_{i} by applying algorithm from [Aggarwal et al., 1987].
5. Having all the minimum entries of each column of A_{i} been calculated, we can compute all elements of the i-th row of S in additional $O(B)$ time.
6. Finally, since S has m rows the total time complexity of the algorithm is $O(m B)$.

Conclusion and final remarks

For the multiple allocation CFLP on a line

- In [Mirchandani et al., 1996]: $O\left(m B \min \left\{a_{\max }, B\right\}\right)$ time algorithm
- Our first modification: $O\left(m B \log \left(\min \left\{a_{\max }, B\right\}\right)\right)$ time algorithm.
- Our second modification: $O(m B)$ time algorithm.

Conclusion and final remarks

For the multiple allocation CFLP on a line

- In [Mirchandani et al., 1996]: $O\left(m B \min \left\{a_{\max }, B\right\}\right)$ time algorithm
- Our first modification: $O\left(m B \log \left(\min \left\{a_{\max }, B\right\}\right)\right)$ time algorithm.
- Our second modification: $O(m B)$ time algorithm.

Remark

The second modification contains the algorithm from [Aggarwal et al., 1987], which has a large constant factor in the big O. Therefore, despite of the obvious advantage in the theoretical evaluation of the running-time, in practice for small values of B the second modification may work slower than the first one.

Conclusion and final remarks

For the multiple allocation CFLP on a line

- In [Mirchandani et al., 1996]: $O\left(m B \min \left\{a_{\max }, B\right\}\right)$ time algorithm
- Our first modification: $O\left(m B \log \left(\min \left\{a_{\max }, B\right\}\right)\right)$ time algorithm.
- Our second modification: $O(m B)$ time algorithm.

Remark

The second modification contains the algorithm from [Aggarwal et al., 1987], which has a large constant factor in the big O. Therefore, despite of the obvious advantage in the theoretical evaluation of the running-time, in practice for small values of B the second modification may work slower than the first one.

Open questions:

- Is there an $O(B+m)$ time algorithm for multiple allocation CFLP on a line?
- Is there an efficient pseudopolinomial-time algorithm for the single allocation CFLP on a line graph?

References:

- [Aggarwal et al., 1987] A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, R. Wilber, "Geometric applications of a matrix searching algorithm," Algorthmica, 2, 1987, pp. 195-208.
- [Mirchandani et al., 1996] P. Mirchandani, R. Kohli, A. Tamir, "Capacitated location problem on a line," Transportation Science, 30(1), 1996, pp. 75-80.

Thanks for your attention!

Lemma

For each $1 \leq i \leq m$, the $B \times B$-matrix A_{i} defined by (7) is totally monotone in columns.

Proof. The proof is by contradiction. But first, we need to show that the function $w_{i}(k, j)$ is concave for each i, that is, for each $i: 1 \leq i \leq m$ and every $1 \leq k_{0}<k_{1} \leq j_{0}<j_{1} \leq B:$

$$
\begin{equation*}
w_{i}\left(k_{0}, j_{0}\right)+w_{i}\left(k_{1}, j_{1}\right) \leq w_{i}\left(k_{0}, j_{1}\right)+w_{i}\left(k_{1}, j_{0}\right) . \tag{8}
\end{equation*}
$$

It's proved by definition.

Lemma

For each $1 \leq i \leq m$, the $B \times B$-matrix A_{i} defined by (7) is totally monotone in columns.

Proof. The proof is by contradiction. But first, we need to show that the function $w_{i}(k, j)$ is concave for each i, that is, for each $i: 1 \leq i \leq m$ and every $1 \leq k_{0}<k_{1} \leq j_{0}<j_{1} \leq B:$

$$
\begin{equation*}
w_{i}\left(k_{0}, j_{0}\right)+w_{i}\left(k_{1}, j_{1}\right) \leq w_{i}\left(k_{0}, j_{1}\right)+w_{i}\left(k_{1}, j_{0}\right) . \tag{8}
\end{equation*}
$$

It's proved by definition. Suppose that the matrix A_{i} defined by (7) is not totally monotone. Therefore, there exist indices $k_{0}<k_{1}$ and $j_{0}<j_{1}$, such that

$$
\begin{equation*}
A_{i}\left(k_{0}, j_{0}\right)>A_{i}\left(k_{1}, j_{0}\right) \text { and } A_{i}\left(k_{0}, j_{1}\right)<A_{i}\left(k_{1}, j_{1}\right) \tag{9}
\end{equation*}
$$

- Suppose that the four elements of matrix A_{i} in (9) are the white elements of A_{i}. Since element $A_{i}\left(k_{1}, j_{0}\right)$ is white, we have $k_{1} \leq j_{0}$, and, therefore, $k_{0}<k_{1} \leq j_{0}<j_{1}$. Summing the inequalities from (9) and using the definition of $A_{i}(k, j)$ from (7), we get:

$$
\begin{gathered}
S\left(i-1, k_{0}\right)+S\left(i-1, k_{1}\right)+w_{i}\left(k_{0}, j_{0}\right)+w_{i}\left(k_{1}, j_{1}\right)> \\
S\left(i-1, k_{0}\right)+S\left(i-1, k_{1}\right)+w_{i}\left(k_{0}, j_{1}\right)+w_{i}\left(k_{1}, j_{0}\right)
\end{gathered}
$$

which contradicts the concave property (8) of $w_{i}(k, j)$.

- Suppose that the four elements of matrix A_{i} in (9) are the white elements of A_{i}. Since element $A_{i}\left(k_{1}, j_{0}\right)$ is white, we have $k_{1} \leq j_{0}$, and, therefore, $k_{0}<k_{1} \leq j_{0}<j_{1}$. Summing the inequalities from (9) and using the definition of $A_{i}(k, j)$ from (7), we get:

$$
\begin{gathered}
S\left(i-1, k_{0}\right)+S\left(i-1, k_{1}\right)+w_{i}\left(k_{0}, j_{0}\right)+w_{i}\left(k_{1}, j_{1}\right)> \\
S\left(i-1, k_{0}\right)+S\left(i-1, k_{1}\right)+w_{i}\left(k_{0}, j_{1}\right)+w_{i}\left(k_{1}, j_{0}\right)
\end{gathered}
$$

which contradicts the concave property (8) of $w_{i}(k, j)$.

- Suppose that among the four elements of matrix A_{i} in (9), there exists a gray element.
- If element $A_{i}\left(k_{1}, j_{0}\right)$ is gray, then we get a straightaway contradiction with the first inequality in (9).
- If element $A_{i}\left(k_{0}, j_{1}\right)$ is gray, then we obtain the same for second inequality in (9).
- If element $A_{i}\left(k_{0}, j_{0}\right)$ is gray, then according to the definition of A_{i} and the choice of indices $k_{0}<k_{1}$ and $j_{0}<j_{1}$, either $A_{i}\left(k_{1}, j_{0}\right)=\infty$, or $A_{i}\left(k_{0}, j_{1}\right)=\infty$, and we get the same type of contradiction with (9).
- If element $A_{i}\left(k_{1}, j_{1}\right)$ is gray, then again either $A_{i}\left(k_{1}, j_{0}\right)=\infty$, or $A_{i}\left(k_{0}, j_{1}\right)=\infty$, and we obtain the same contradiction with (9).
Therefore, matrix A_{i} is totally monotone in columns.

