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Capacitated Facility Location Problem (general case)
Given:

a set M of possible facility locations (|M|= m),
a set N of clients (|N|= n);
fi is an opening cost for facility i,
ai is a capacity of facility i;
b j is an integer demand of client j;
gi j is a transportation cost of delivering a unit of product from facility i to
client j.

Find: a subset of facilities M′ ⊆M
to open such that:

∑
i∈M′

fi + ∑
j∈N

∑
i∈M′

b jgi jxi j→min

∑
i∈M′

xi j = 1, j ∈ N,

∑
j∈N

b jxi j ≤ ai, i ∈M′,

xi j ≥ 0
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Types of Capacitated Facility Location Problem

Metric CFLP

Transportation costs satisfy triangle inequality. (The transportation cost from i to
j is defined according to the shortest path distance in network graph).

Single allocation CFLP

A demand of a client must be served by only one facility.
For the allocation variables xi j: xi j ∈ {0,1}.

Multiple allocation CFLP

A client can be served by multiple facilities simultaneously.
For the allocation variables xi j: 0≤ xi j ≤ 1.

Statement

All variants of the problem are NP-hard.
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Capacitated Facility Location Problem on a Line Graph
Given:

a line graph G = (V,E), V = M]N,
M is a set of possible facility locations (|M|= m),
N is a set of clients (|N|= n);
fi is an opening cost for facility i,
ai is a capacity of facility i;
b j is an integer demand of client j;
ce is a cost of transporting a unit of product along edge e ∈ E,
Pi j is a (shortest) path between a facility i at vertex number vi and a client j
at vertex number v j
gi j = ∑e∈Pi j ce is a transportation cost of delivering a unit of product from
facility i to client j.
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Capacitated Facility Location Problem on a Line Graph
Find: which facilities to open such that:

∑
i∈M

fiyi + ∑
i∈M

∑
j∈N

b jgi jxi j→min
yi,xi j

(1)

∑
j∈N

b jxi j ≤ aiyi, i ∈M, |M|= m, (2)

∑
i∈M

xi j = 1, j ∈ N, |N|= n, (3)

xi j ≥ 0,yi ∈ {0;1}, (4)

where
xi j is a share of the demand of a client j at vertex number v j served by a facility i
at vertex number vi,

yi =

{
1, if one opens a facility i ∈M,

0, otherwise.

Statement

CFLP is NP-hard even on a line graph, since in the case of zero transportation
costs and only one client it contains the MINIMIZATION KNAPSACK problem.
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Applications of CFLP on a Line Graph

Rest area location. Cars enter a highway at different points. What is the
smallest number of rest areas that are needed along the highway to ensure
that each car can access a rest area within a given distance from its point of
entry?

Transformer location. A high-voltage power line runs through rural
townships. To limit power losses, step-down transformers must be installed
within certain distances of the townships. What is the smallest number of
transformers required to service all communities?
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Our contributions

Known result: [Mirchandani et al., 1996]

The multiple allocation CFLP on a line graph can be solved by a dynamic
programming pseudopolynomial-time algorithm with running-time

O(mBmin{amax,B}),

where B = ∑ j∈N b j is the total demand and amax is the maximum facility capacity.

We present 2 modifications of this algorithm:

1. First modification: using binary heap, we improve time complexity
to O(mB log(min{amax,B})).

2. Second modification: using algorithm from [Aggarwal et al., 1987], we
improve time complexity to O(mB).
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Reduction to CFLP with unit demands:
The algorithm from [Mirchandani et al., 1996] starts by reducing the multiple
allocation CFLP with n clients to the multiple allocation CFLP with B = ∑ j∈N b j
clients, each of unit demand.
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Notation

For each facility i let `i and ri be the lowest and the highest client indices such
that facility i has enough capacity to serve all the clients of the segments [`i,vi]
and [vi,ri], respectively.

Remark

A facility of unbounded capacity can be considered as a facility of capacity B. Let
ãi = min{ai,B} be the revised facility capacities, i = 1, . . . ,m.
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Notation

Let wi(k, j), k < j, be the total transportation costs required to serve all the

clients of the segment (k, j] from the facility i: wi(k, j) = ∑
j
t=k gitbt .

Remark

Using data structures that can be precomputed in time O(B+m), the values
wi(k, j) can be found in constant time for any given 1≤ i≤ m, 1≤ k < j ≤ B by
the following formula.

wi(k, j) =


D( j)−D(k)−d(i)(v j− vk), if vi ≤ vk < v j,

D(k)+D( j)−2D(i)−d(i)(vk + v j−2vi), if vk < vi < v j,

D(k)−D( j)+d(i)(v j− vk), if vk < v j ≤ vi,

(5)

where the partial sums d(t) = ∑
t
j=1 c( j−1, j) and D(t) = ∑

t
j=1 d( j) for all

t = 1, . . . ,B+m can be computed recursively in total time O(B+m).

Remark

All the values ri and `i for i = 1, . . . ,m can be found in time O(m+B).
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Dynamic Programming Algorithm

Algorithm from [Mirchandani et al., 1996].

Let S(i, j) be the optimum value of a subproblem in which the first j clients on
the line are optimally served by a subset of the first i facilities.

For all i = 1, . . . ,m, j = 1, . . . ,B

S(i, j) =


min

{
S(i−1, j), fi + min

max{ j−ãi,`i}≤k≤ j
{ S(i−1,k)+wi(k, j)}

}
,

if `i ≤ j ≤ ri,

S(i−1, j), otherwise.

(6)

Time complexity: O(mBmin{amax,B}).
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The First Modification: Using Binary Heap

Definition

A minimum binary heap is a complete binary tree, in which the value of each node
is greater than or equal to the value of its parent, with the minimum-value
element at the root.

If q is the number of nodes in a binary
heap, then each of the operations:
deleting an element, adding
a new element and restoring the
shape property of a heap can be done
in O(logq) time, while finding the
minimum element takes O(1) time.

Theorem

The multiple allocation CFLP on a line graph can be solved using binary heap in
O(mB log(min{amax,B})) time.
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The Second Modification: O(mB) Time Algorithm

S(i, j) =


min

{
S(i−1, j), fi + min

max{ j−ãi,`i}≤k≤ j
{ S(i−1,k)+wi(k, j)}

}
,

if `i ≤ j ≤ ri,

S(i−1, j), otherwise.

Consider the i-th row of table S. To compute element S(i, j) one needs to find
min1≤k≤B Ai(k, j), where

Ai(k, j) =

{
S(i−1,k)+wi(k, j), if max{ j− ãi, `i} ≤ k ≤ j,
∞, otherwise,

(7)

We will show how to find minimum element
in each column of Ai in O(B) time.
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The Second Modification: O(mB) Time Algorithm

Definition

An α×β -matrix A with real entries is monotone in columns, if for every pair of
columns with indices j0 < j1, it holds that i( j0)≤ i( j1), where i( j) is the smallest
row index i, such that element A(i, j) equals to the minimum value in the j-th
column of A. Matrix A is said to be totally monotone in columns, if every 2×2
submatrix of A is monotone.

Statement [Aggarwal et al., 1987].

Let an α×β -matrix A be totally monotone in columns. There exists an algorithm
[Aggarwal et al., 1987] that finds the minimum entry in each column of A in
O(α +β ) time.

Lemma 1.

For each 1≤ i≤ m, the B×B-matrix Ai defined by (7) is totally monotone in
columns.
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Theorem

The multiple allocation CFLP on a line graph can be solved in O(mB) time.

Proof.
An improved exact algorithm for the multiple allocation CFLP on a line works as
follows.

1. We reduce the multiple allocation CFLP to the multiple allocation CFLP with
unit demands as in [Mirchandani et al., 1996].

2. We compute the sums from Remark 1 in O(m+B) time and the values li,ri
for 1≤ i≤ m, so that we could further calculate any element wi(k, j) in
O(1) time.

3. For each i = 1, . . . ,m we compute the i-th row of table S defined by (6) as
follows:

4. In a B×B-matrix Ai defined as (7), which is totally monotone in columns,
according to Lemma 1, in time O(B) we obtain minimum entries of each
column of matrix Ai by applying algorithm from [Aggarwal et al., 1987].

5. Having all the minimum entries of each column of Ai been calculated, we can
compute all elements of the i-th row of S in additional O(B) time.

6. Finally, since S has m rows the total time complexity of the algorithm is
O(mB).
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5. Having all the minimum entries of each column of Ai been calculated, we can
compute all elements of the i-th row of S in additional O(B) time.

6. Finally, since S has m rows the total time complexity of the algorithm is
O(mB).
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Conclusion and final remarks

For the multiple allocation CFLP on a line

In [Mirchandani et al., 1996]: O(mBmin{amax,B}) time algorithm

Our first modification: O(mB log(min{amax,B})) time algorithm.

Our second modification: O(mB) time algorithm.

Remark

The second modification contains the algorithm from [Aggarwal et al., 1987],
which has a large constant factor in the big O. Therefore, despite of the obvious
advantage in the theoretical evaluation of the running-time, in practice for small
values of B the second modification may work slower than the first one.

Open questions:

Is there an O(B+m) time algorithm for multiple allocation CFLP on a line?

Is there an efficient pseudopolinomial-time algorithm for the single
allocation CFLP on a line graph?
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Thanks for your attention!
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Lemma

For each 1≤ i≤ m, the B×B-matrix Ai defined by (7) is totally monotone in
columns.

Proof. The proof is by contradiction. But first, we need to show that the function
wi(k, j) is concave for each i, that is, for each i : 1≤ i≤ m and every
1≤ k0 < k1 ≤ j0 < j1 ≤ B:

wi(k0, j0)+wi(k1, j1)≤ wi(k0, j1)+wi(k1, j0). (8)

It’s proved by definition.

Suppose that the matrix Ai defined by (7) is not totally monotone. Therefore,
there exist indices k0 < k1 and j0 < j1, such that

Ai(k0, j0)> Ai(k1, j0) and Ai(k0, j1)< Ai(k1, j1). (9)
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Suppose that the four elements of matrix Ai in (9) are the white elements of
Ai. Since element Ai(k1, j0) is white, we have k1 ≤ j0, and, therefore,
k0 < k1 ≤ j0 < j1. Summing the inequalities from (9) and using the definition
of Ai(k, j) from (7), we get:

S(i−1,k0)+S(i−1,k1)+wi(k0, j0)+wi(k1, j1)>

S(i−1,k0)+S(i−1,k1)+wi(k0, j1)+wi(k1, j0),

which contradicts the concave property (8) of wi(k, j).

Suppose that among the four elements of matrix Ai in (9), there exists a gray
element.

I If element Ai(k1, j0) is gray, then we get a straightaway contradiction with the
first inequality in (9).

I If element Ai(k0, j1) is gray, then we obtain the same for second inequality in
(9).

I If element Ai(k0, j0) is gray, then according to the definition of Ai and the
choice of indices k0 < k1 and j0 < j1, either Ai(k1, j0) = ∞, or Ai(k0, j1) = ∞,
and we get the same type of contradiction with (9).

I If element Ai(k1, j1) is gray, then again either Ai(k1, j0) = ∞, or Ai(k0, j1) = ∞,
and we obtain the same contradiction with (9).

Therefore, matrix Ai is totally monotone in columns.

�
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