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Structure of Lecture

e (Google problem (Page Rank)
e Inverse problems: traffic demand matrix estimation from link loads
e Empirical Risk Minimization (ERM)
e Maximum Likelihood Estimation (MLE)
e Bayesian inference
e L1-optimization (sparse solution)
e Typical Data Science problem formulation (as optimization problem)
e Dual problem



Google problem (Page Rank)
Let there are N >1 users that independently walk at random on the

web-graph (n vertexes). Assume that transitional probability matrix of ran-
dom walks P is irreducible. Let’s denote n, (t) — the number of users at the

I-th web-page at the moment of time t. Using Gordon—Newell’s theorem
one can obtain 3' pe S (1): p' =p' P (p —Page Rank) and
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Hence, using Hoeffding’s inequality in a Hilbert space one can obtain
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How to find Page Rank via Convex Optimization?

According to Frobenius’ theory for nonnegative matrix we have the fol-
lowing equivalent optimization’s type reformulations of Google problem:

1 _ ]
E|| Ax||§ —> rrgl(q); (smooth representation)

|AX| — rr;i(q); (not smooth representation)

Xrerg:(rl) wng%)<a) Ax>; (saddle point representation)

1 : : :
Euxuz — min, (required dual representation)

—

where A=P" — 1, A=J"A, J=[1,;-1,], A=[P~1,;1] , b=(0....0.1)"
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Inverse problems: traffic demand matrix estimation from link loads

In the problem of traffic demand matrix estimation the goal Is to recov-
er traffic demand matrix represented as a vector x>0 from known route
matrix A (the element A ; is equal 1 iff the demand with number j goes

through link with number 1 and equals O otherwise) and link loads b
(amount of traffic which goes through every link). This leads to the prob-
lem of finding the solution of linear system Ax=Db. Also we assume that
we have some x;, >0 which reflects our prior assumption about x. Thus

we consider x to be a projection of x, on a simplex-type set
{x>0: Ax=b}

] 2 ]

r/glzg{g(x)::ux—xgHz}: min g(x).

Jpuc-bff<0



Slater’s relaxation of this problem leads to the problem (denote x. the solu-
tion of this problem)

2 i
[x=x,[” — min
2 | Ax-b|o<e?
x>0

This problem can be reduced to the problem (unfortunately without explicit
dependence 4 (¢))

f(x)= Hx—xgHz + || Ax=b|}, — min,

x>0

where 4 — dual multiplier to the convex inequality ||Ax—b||§ <g’



f(x)=[x=x,] + 2| Ax=b] — min

x>0

One might expect that 4 > Hx*—xgHZ/gz, but in reality 2 can be chosen

much smaller (1 ~ & —&7®) if we restrict ourselves only by approximate
solution. Let’s reformulate the problem

f(x) = Ax=b} + 2x—x; . - min,

x>0
where 1 =A1"". But sometimes it is worth to consider more general cases:
1 :
f(x)= EHAx—bHi +g(x)—> min.

Hastie T., Tibshirani R., Friedman R. The Elements of statistical learning:
Data mining, Inference and Prediction. Springer, 2009.



f(x)=|Ax=b[; +9(x) > min

Possible variants for choosing g(x) are:

1. (Ridge Regression / Tomogravity model)
o(x)=Alx—x'[ Q=
2. (Mimimal mutual information model)
g(x):lzn:xk In(xk/x,?), X, X° eQ=Sn(R):{XZOZZn:Xk = R}.
k=1 k=1
3. (LASSO)
g(x)=A[x],, Q=R;



Empirical Risk Minimization (ERM)
Suppose we have observation {xi , yi}i”:1 and we have some loss function

|(f, x,Y). For example,
I(f,X.Y)=1{f(X)=Y| - binary classification;
1(f.x.Y)=(f(X)-Y) - regression;
I(f,X,Y)=max{0,1-¥f (X)} - hinge loss.

Let’s introduce V — VC-dimension of class F,

L(fA):EX,Y[I(f{ ' ,X,Y)‘{xi,yi}:l}for f=f _ eF,

Xi+Yi i=1 {Xi Yi }inzl

10



N

e :argminznll(f,xi,yi), L(f.)=inf L(f).
=1

feF : feF

Then (Vapnik—Chervonenkis, Zauer, Hausler for binary classification)

P L(fERM)—L(f*)SC\FF+\/2m(nG1) >1-o,

where C is universal constant.

Now Statistical Learning Theory (SLT) is a big branch of research
where ERM approach (and its penalized versions) is the main tools.

Shalev-Shwartz S., Ben-David S. Understanding Machine Learning: From
theory to algorithms. Cambridge University Press, 2014.

Sridharan K. Learning from an optimization viewpoint. PhD Thesis, 2011.
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Maximum Likelithood Estimation (Fisher, Le Kam, Spokoiny)

Let x,,k=1..,n — i.i.d. with density function p, (X&) (supp. doesn’t
depend on &), depends on unknown vector of parameters &. Then for all
statistics §() (with E, | 6(x)" | <o0);

E, [(é‘(x) —6?)(67(x) = Q)T } - | p,n]_l, (Rao—Cramer inequality)

def

|, =E, [Ve Inp, (x|6)(V,Inp, (x\@))T}: nl,,,

~

O (X) =argmax p, (x|@) =argmax|n p, (x|0) =

=argmax In f[ P, (x;|0)=arg mglxzn: In p, (x;]6),
=1 =1
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)Inp, (%]6)dx

0, = arg mglen:Exi [In p,. (%:|6) } arg maxz_[ Py
=1

Le Kam theory (Fisher’s theorem): When n— oo then 6, (X) is asymp-
totically normal and optimal in sense of Rao—Cramer inequality (“=").

Recently V. Spokoiny’ve proposed non asymptotic variant of this
theory. In particular his theory allows to answer for the question: how fast

could m— oo (m=dim@ ) with n — oo for asymptotic optimality of & (x).
He also considered closely connected result — Wilks’ phenomenon.

Example (Least Squares). y. =kx. +b+¢& & €N (0,02), Hz(k,b)T,

]
v X)) A .
Xx=A0+&, Xx={y,} , A ();1 1”] , Owie (X) =arg m@mHA&'—tz.
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Van Trees inequality (generalization of Rao—Cramer inequality)

Let x,,k=1..,n — i.i.d. with density function p, (X&) (supp. doesn’t
depend on @), depends on unknown vector of parameters € with prior dis-
tribution 7z(&). Then for all statistics & (x) (with E [6?( ) ]<oo):

0| (0x)-0)(0(0)-0) |- [1,,+1.]" *)

2[5 (G 0 -,

def

L2V, ()5, (o) |
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Bayesian inference

Bayesian estimation:

~

b, (x)=arg mgjn_[ | (é,H)pX (x|0)7(6)d6,
(0.0)- Y.

Le Kam theory: When n— oo then 6, (x) is asymptotically normal and
optimal in sense of (*) (“=").

Recently V. Spokoiny’ve proposed non asymptotic variant of this
theory. In particular his theory allows to answer for the question: how fast

could m— oo (m=dim@ ) with n — oo for asymptotic optimality of 6, (x).
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Van Trees inequality — Rao-Cramer inequality and 8, (X) — 6, (X)
when 77(«9) e N (0,02| ) with o — oo.

Berstein-von Mises theorem say that &, (x) is n™?-normaly concen-

trated around éMLE(x) when n —oo. Recently V. Spokoiny’ve proposed
non asymptotic variant of this theorem.

Example. Assume that
x=A0+&, £eN(0,0°1), prioron 6 N(6,,6°1)

Then (compare to the traffic demand matrix estimation problem)

~

0, (x)=arg m@in{HAﬁ—tz +/1H6’—¢99H2}, A=0c"/6".
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Compressed Sensing and L1-optimization (Donoho, Candes, Tao)

There are many areas where linear systems arise in which a sparse solu-
tion is unigue. One is In plant breading. Consider a breeder who has a
number of apple trees and for each tree observes the strength of some de-
sirable feature. He wishes to determine which genes are responsible for the
feature so he can cross bread to obtain a tree that better expresses the desir-
able feature. This gives rise to a set of equations Ax=Db where each row of
the matrix A corresponds to a tree and each column to a position on the ge-
nome. The vector b corresponds to the strength of the desired feature in
each tree. The solution x tells us the position on the genome corresponding
to the genes that account for the feature. So one can hope that NP-hard

problem ||x|, — min can be replaced by convex problem X[, = min. Due

to Lagrange multipliers principle we can relax this problem as
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1 .
EHAx—bHi + Al|x], > min.
What are the sufficient conditions for: ||x||0 S min < ||x||1 — min?

Restricted Isometry Property (RIP)
(1—5S)HXH§ < HAXHE <(1+ 5S)HXH§ for any s-sparse x.

Sufficient condition. Suppose that x, (solution of ||x| — min) has at

-1
most s nonzero coordinates, matrix A satisfy RIP with &, 3(5\/5 ) , then

X, is the unique solution of the convex optimization problem ||x|, — min.
X=

Example RIP matrix: for all xe R" — P((l—g)Htz sHAtz <(1+ g)HxHj)21—2exp(—52n/6),
where i.id. AjeN(0,n") (0<&<1). If Alis (£,2s)-RIP and |%], <s satisfy Ax=b then X=X,
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Examples of Data Science problems

Typically Data Science problems lead to the optimization problems:

i fi (AL X)+g(x) > min.

k=1 xeQ
At least one of the dimensions is huge m (sample size), n (parameters).

Ridge Regression
f(Y,)=C-(y.-h)" g(x)= %Hx”i (smooth, strictly convex)
Support Vector Machine (SVM has Bayesian nature, V.V. Mottl’)

f (¥, )=Cmax{0,1-b,y,}, g(x)= %Hx”i (non smooth, strictly convex)
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Dual problem (convex case)

Sometimes it is proper to solve dual problem instead of primal one:

54, ((Ax)) +9(x) > min
Teg”{ifk(ﬁlx)+g } r?{?n ifk }:

k=1 . Uk=1

- min max(z-7.y)+ 30, (2)+ 9 () -

, y
2=AX,z

yeR"™ xeQ
z=AX

— max<r—max{(—z, y)—g(x)}- mgx{(z’, y)—zm: f(z )}> —



- o -max(( A7 .x)-0(0) - S ey, ()} -

k=1 %
=max<-g"(-A"y)-Y k*(yk)}=—mig{g*(—ATy)+Zfk*(yk)}-
yeR k=1 yeR k=1

L 2 : L s :
1) EHAX_sz +§HX_X9H2 —min, 2) EHAX—sz +ykz_1:xk Inx, — min

1) i(”xg ~ATyf |, HZ)+2—1L(Hy b ~ o[ ) - min, (dual for 1)

1 L [_ATy]i 1 2 2 :
2) ﬂln[;exp[ p H+2L(y+b2bz)—>ryre11|R[n1.(dualfor2))
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Good and Bad News

Good news: In convex case even with huge m and n these type of the
problems

m

> fk(<Ak,x>)+g(x)—>rpeiQn

k=1

are fast solvable numerically (often by accelerated primal or dual coordinate
descent methods).

Bad news: Real Data Science problems often lead to non convex optimi-
zation problems. Typical example is probabilistic topic modeling (see K.V.
Vorontsov). With MLE-approach one can obtain only non convex problem

(o008 = Tt Tt |, mi

deD wew teT 1)}; {ad EST(]')} |
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