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Structure of Lecture 

 
 

 Google problem (Page Rank) 

 Inverse problems: traffic demand matrix estimation from link loads 

 Empirical Risk Minimization (ERM) 

 Maximum Likelihood Estimation (MLE) 

 Bayesian inference 

 L1-optimization (sparse solution) 

 Typical Data Science problem formulation (as optimization problem)  

 Dual problem 
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Google problem (Page Rank) 

Let there are 1N   users that independently walk at random on the 

web-graph (n  vertexes). Assume that transitional probability matrix of ran-

dom walks P  is irreducible. Let’s denote  in t  – the number of users at the 

i -th web-page at the moment of time t . Using Gordon–Newell’s theorem 

one can obtain  ! 1 : T T

np S p p P    ( p  – Page Rank) and 
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Hence, using Hoeffding’s inequality in a Hilbert space one can obtain 
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How to find Page Rank via Convex Optimization? 

According to Frobenius’ theory for nonnegative matrix we have the fol-

lowing equivalent optimization’s type reformulations of Google problem: 
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 ; (smooth representation) 
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 ; (not smooth representation) 
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 ; (saddle point representation) 
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Inverse problems: traffic demand matrix estimation from link loads 

In the problem of traffic demand matrix estimation the goal is to recov-

er traffic demand matrix represented as a vector 0x   from known route 

matrix A (the element ,i jA  is equal 1 iff the demand with number j  goes 

through link with number i  and equals 0 otherwise) and link loads  b  

(amount of traffic which goes through every link). This leads to the prob-

lem of finding the solution of linear system Ax b .  Also we assume that 

we have some 0gx   which reflects our prior assumption about x .  Thus 

we consider x  to be a projection of gx  on a simplex-type set 

 0 :x Ax b   
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Slater’s relaxation of this problem leads to the problem (denote *x  the solu-

tion of this problem) 
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This problem can be reduced to the problem (unfortunately without explicit 

dependence    ) 
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     ,  

where   – dual multiplier to the convex inequality 
2 2

2
Ax b   . 
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One might expect that 
2

2

* 2gx x  , but in reality   can be chosen 

much smaller ( 1 2    ) if we restrict ourselves only by approximate 

solution. Let’s reformulate the problem 
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ming
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     ,  

where 1   . But sometimes it is worth to consider more general cases: 

   
2

2

1
min

2 x Q
f x Ax b g x


    . 

Hastie T., Tibshirani R., Friedman R. The Elements of statistical learning: 

Data mining, Inference and Prediction. Springer, 2009. 
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2

2

1
min

2 x Q
f x Ax b g x


     

Possible variants for choosing  g x  are: 

1. (Ridge Regression / Tomogravity model) 

 
2

2

gg x x x  , nQ   ; 

2. (Mimimal mutual information model) 
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3.  (LASSO) 
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g x x , 
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Empirical Risk Minimization (ERM) 

Suppose we have observation  
1

,
n

i i i
x y


 and we have some loss function 

 ˆ , ,l f X Y . For example, 

    ˆ ˆ, ,l f X Y I f X Y   – binary classification; 

    
2

ˆ ˆ, ,l f X Y f X Y   – regression; 

    ˆ ˆ, , max 0,1l f X Y Yf X   – hinge loss. 

Let’s introduce V  –  VC -dimension of class F , 
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1

ˆ argmin , ,
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L f L f


 . 

Then (Vapnik–Chervonenkis, Zauer, Hausler for binary classification) 
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, 

where C  is universal constant. 

Now Statistical Learning Theory (SLT) is a big branch of research 

where ERM approach (and its penalized versions) is the main tools. 

Shalev-Shwartz S., Ben-David S. Understanding Machine Learning: From 

theory to algorithms. Cambridge University Press, 2014.  

Sridharan K. Learning from an optimization viewpoint. PhD Thesis, 2011.  
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Maximum Likelihood Estimation (Fisher, Le Kam, Spokoiny) 

Let x , 1,...,k k n  – i.i.d. with density function  x xp   (supp. doesn’t 

depend on  ), depends on unknown vector of parameters  . Then for all 

statistics  x  (with  
2

x xE    
 
 ): 

     
1

x ,x x
T

p nE I   
        

   ,  (Rao–Cramer inequality) 
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      * x x x * x

1 1
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n n
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E p p x p x dx
 

   
 

      

Le Kam theory (Fisher’s theorem): When n then  xMLE  is asymp-

totically normal and optimal in sense of Rao–Cramer inequality (“=”). 

Recently V. Spokoiny’ve proposed non asymptotic variant of this 

theory. In particular his theory allows to answer for the question: how fast 

could m ( dimm   ) with n for asymptotic optimality of  xB
 . 

He also considered closely connected result – Wilks’ phenomenon.  

Example (Least Squares). i i iy kx b      20,i N  ,  ,
T

k b  , 

x A   ,  
1

x
n

i i
y


 , 

1 ...

1 ... 1

T

nx x
A
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x argmin xMLE A
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Van Trees inequality (generalization of Rao–Cramer inequality) 

Let x , 1,...,k k n  – i.i.d. with density function  x xp   (supp. doesn’t 

depend on  ), depends on unknown vector of parameters   with prior dis-

tribution    . Then for all statistics  x  (with  
2

x xE    
 
 ): 

 

     
1

x, ,x x
T

p nE I I    
        

   ,                        (*) 
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Bayesian inference 

Bayesian estimation:   

 

       xx argmin , x ,B I p d


       

  

 
2

2

1
, .

2
I     
 

 

Le Kam theory: When n then  xB
  is asymptotically normal and 

optimal in sense of (*) (“=”). 

Recently V. Spokoiny’ve proposed non asymptotic variant of this 

theory. In particular his theory allows to answer for the question: how fast 

could m ( dimm   ) with n for asymptotic optimality of  xB
 . 
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Van Trees inequality  Rao–Cramer inequality and  xB
     xMLE  

when    20,N I    with  . 

Berstein–von Mises theorem say that  xB
  is 1 2n -normaly concen-

trated around   xMLE  when n. Recently V. Spokoiny’ve proposed 

non asymptotic variant of this theorem. 

Example. Assume that 

x A   ,  20,N I  , prior on  2,gN I     

Then (compare to the traffic demand matrix estimation problem) 

   22

2 2
x argmin xB gA


        , 2 2    .
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Compressed Sensing and L1-optimization (Donoho, Candes, Tao) 

There are many areas where linear systems arise in which a sparse solu-

tion is unique. One is in plant breading. Consider a breeder who has a 

number of apple trees and for each tree observes the strength of some de-

sirable feature. He wishes to determine which genes are responsible for the 

feature so he can cross bread to obtain a tree that better expresses the desir-

able feature. This gives rise to a set of equations Ax b   where each row of 

the matrix A corresponds to a tree and each column to a position on the ge-

nome. The vector b  corresponds to the strength of the desired feature in 

each tree. The solution x  tells us the position on the genome corresponding 

to the genes that account for the feature. So one can hope that NP-hard 

problem 
0

min
Ax b

x


  can be replaced by convex problem 
1

min
Ax b

x


 . Due 

to Lagrange multipliers principle we can relax this problem as   
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2

2 1

1
min

2 x
Ax b x   . 

What are the sufficient conditions for: 
0

min
Ax b

x


     
1

min
Ax b

x


 ? 

Restricted Isometry Property (RIP) 

   
2 2 2

2 2 2
1 1s sx Ax x       for any s-sparse x . 

Sufficient condition. Suppose that 0x  (solution of 
0

min
Ax b

x


 ) has at 

most s  nonzero coordinates, matrix A satisfy RIP with  
1

5s s


 , then 

0x  is the unique solution of the convex optimization problem 
1

min
Ax b

x


 . 

Example RIP matrix: for all nx         
2 2 2 2

2 2 2
1 1 1 2exp 6P x Ax x n         , 

where i.i.d.  10,ijA N n  (0 1  ). If A is  ,2s -RIP and 
0

x s  satisfy Ax b  then 0x x . 
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Examples of Data Science problems 

Typically Data Science problems lead to the optimization problems: 

   
1

min
m

T

k k
x Q

k

f A x g x




  . 

At least one of the dimensions is huge m   (sample size), n  (parameters). 

Ridge Regression  

   
2

k k k kf y C y b   ,  
2

2

1

2
g x x . (smooth, strictly convex) 

Support Vector Machine (SVM has Bayesian nature, V.V. Mottl’) 

    max 0,1k k k kf y C b y  ,  
2

2

1

2
g x x . (non smooth, strictly convex)  
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Dual problem (convex case) 

Sometimes it is proper to solve dual problem instead of primal one: 
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Good and Bad News 

Good news: In convex case even with huge m  and n  these type of the 

problems 

   
1

, min
m

k k
x Q

k

f A x g x




   

are fast solvable numerically (often by accelerated primal or dual coordinate 

descent methods).   

Bad news: Real Data Science problems often lead to non convex optimi-

zation problems. Typical example is probabilistic topic modeling (see K.V. 

Vorontsov). With MLE-approach one can obtain only non convex problem 
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