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Abstract—Many-core processor architecture is a promising paradigm for the development of
modern supercomputers. In this paper, we consider the parallel implementation of the generic
molecular dynamics algorithm for the many-core Epiphany architecture. This architecture
implements a new type of many-core processor composed of 16 simple cores connected by a
network on chip with mesh topology. New approaches to parallel programming are required to
deploy this processor. We use LAMMPS running on one 64-bit ARMv8 Cortex-A53 CPU core
for comparing the accuracy of the results of the presented variant of the molecular dynamics
algorithm for Epiphany and its computational efficiency.
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1. INTRODUCTION
Molecular dynamics (MD) is an extremely powerful mathematical and computational tool of

modern science. MD models are used in materials science, chemistry, biology, physics and many
interdisciplinary fields. Users of the method perform researches to refine the models, to achieve a
better fit to experimental data, to expand the limits of applicability of the method, and to create
new empirical interaction potentials. However, this paper does not concern these topics directly, it
is devoted to the computational aspects of the molecular dynamics method.

Since MD is a very computationally demanding problem and it accounts for a large fraction of the
computational time on the supercomputers all over the world, the issues of effective implementation
and parallelization techniques of the method are well studied. Nevertheless, these issues are closely
related to the particular considered computer architecture.

The possibilities of using MD calculations to solve real problems are significantly limited by the
achievements of modern computer industry. To solve a number of urgent problems, at least the
exaflop level of computing power is required, the achievement of which is associated with many
difficulties.

After many years of extensive growth, the dominant computer architecture has come close to
its limits, and the further development of the industry lies in the use of new architectures. The
many-core mass-parallel processor architecture is considered as a promising technology [1]. Among
modern devices, Epiphany is almost the only available for a wide range of researchers example of
mass-parallel processor architecture and deserves close attention [2].

In this paper we consider the adaption of MD algorithm for parallel processor architecture
Epiphany. Over the naive implementation of the classical molecular dynamics code with a short-
range potential, we describe a method for reducing the exchange between processors in a parallel
program.

* E-mail: vnikolskiy@hse.ru
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2. RELATED WORK
Development of new algorithms for novel many-core processor architectures becomes more and

more complicated as the degree of parallelism increases (see e.g. [3]). At the same time, the search
for energy efficient novel architectures is an important trend [4, 5].

The balance of programming complexity for data-parallel accelerators was discussed by
Lee et al. [6]. In the recent review [7], the key aspects of accelerator-based systems performance
modelling were considered. Wu et al. revealed the properties of MD codes on multi- and many core
processors [8].

The work [9] was devoted to the d evelopment of general-purpose HPC libraries for the Epiphany
architecture. Ross and Richie discussed a threaded MPI model and its implementation for
Epiphany [10]. The design of the OpenMP 4.0 infrastructure for the Parallella board was presented
in [11].

Sukhinov and Ostrobrod [12, 13] reported a successful implementation of an applied face-
detection algorithm for the Epiphany-III coprocessor. The paper [14] discusses the use of the
Parallella board with E16G3 for solving the problem of computational fluid dynamics. A simple
test program was implemented, performance was measured and compared with a modern server
processor and graphics accelerator. At a low overall performance, the Parallella platform showed
high energy efficiency comparable to a graphics accelerator. In the paper it was shown that the small
amount of memory available on the computing elements is a serious limitation for the algorithm.
Thus, the results obtained in the work are characteristic of a particular class of algorithms, and can
not be directly generalized to the molecular dynamics.

The Parallella Board
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Figure 1. The scheme of the Parallella board

Figure 2. The Epiphany chip architecture scheme. Each core includes one RISC CPU, 32 KB of fast local
memory, DMA engine and the connection to the fast on-chip network with 2D mesh topology
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3. EPIPHANY ARCHITECTURE AND PROGRAMMING MODEL
In this work, we use the prototype board Parallella (Fig. 1). It includes a dual-core ARM host

CPU, FPGA and a 16-core Epiphany-III co-processor (E16G301) and 1GB SDRAM. There are
several interfaces: Gigabit Ethernet, Micro-SD storage, 48 GPIO pins, HDMI and USB. The host
runs an Ubuntu Linux modification (so-called Parubuntu Linux).

The Epiphany architecture [15] is a distributed shared memory architecture comprised of an
array of RISC processors communicating via a low-latency mesh network on chip (NoC), see Fig. 2.
The eMesh NoC consists of three separate and orthogonal mesh structures, each serving different
types of transaction traffic.

1. The cMesh is used for write transactions to on-chip mesh-nodes. It has a maximum bandwidth
of 4.8 GB/s up, and 4.8 GB/s down in each of the four routing directions. Write transactions
move through the network with a latency of 1.5 clock cycles per routing hop. A transaction
traversing from the left edge to right edge of a 64-core chip would thus take 12 clock cycles.

2. The rMesh is used for all read transactions. Read transactions do not contain any data, but
instead travel across the rMesh until the destination node is reached. Here, a write transaction
is initiated to transport the data back to the requesting node. The rMesh can issue one read
transaction every 8 clock cycles, resulting in 1/8th of the maximum cMesh bandwidth.

3. The xMesh is used for write transactions destined for off-chip resources and for passing
through transactions destined for another chip in a multi-chip configuration. It is split in a
North-to-South and an East-to-West network. The bandwidth of the xMesh is matched to
the off-chip links of the architecture.

Each node in the processor array is a complete RISC processor capable of running an operating
system with small amount of fast local memory (32 KB).

Epiphany uses a flat cacheless memory model. All amount of the distributed memory is readable
and writable by all processors in the system. The edges of the 2D array can be connected to non-
Epiphany interface modules, such as memory modules, FIFOs, I/O link ports, or standard buses.
The array of processors with 32-bit address map can be scaled up to 4095 cores on a single chip.
The existing prototype Epiphany-V reaches the value of 1024 cores on a single chip [16]. It is
able to demonstrate 50–70 GFlops/W processing efficiency at the core supply level through such
architectural properties as absence of cache. According to Vocke, E16G301 peak power efficiency of
32 GFlops/W can be attained at 400 MHz clock frequency [17], while on the Parallella board the
Epiphany coprocessor runs at a fixed frequency of 600 MHz.

In this work, the ARL OpenSHMEM for Epiphany is used for the parallel algorithm develop-
ment [18, 19]. This is an open source OpenSHMEM 1.4 implementation that can be built using
Epiphany eSDK.

4. MOLECULAR DYNAMICS MODEL
The dynamics of N interacting particles is described by the system of equations

mi
d2ri
dt2

= Fi(ri, . . . , rN ), or mi
dvi

dt
= Fi(ri, . . . , rN ),

dri
dt

= vi,

where mi, ri and vi are the mass, coordinate, and velocity of the i-th particle. Force Fi, acting on
it is defined as

Fi(ri, . . . , rN ) = −∂U(ri, . . . , rN )

∂ri
.

The potential function U determines the physical properties of the system. In this work, we use
the Lennard-Jones potential, which represents the generic interaction of neutral atoms:

U(r) = 4ε

[(σ
r

)12
−

(σ
r

)6
]
.
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In computer simulations, the Lennard-Jones potential can be considered equal to zero for sufficiently
long distances (e.g., r ≥ 2.5σ). We use such a truncated potential in this work.

The integration of equations of motion is performed by the velocity Verlet scheme

vi(t+
∆t

2
) = vi(t) +

Fi(t)

mi

∆t

2
, (1)

ri(t+∆t) = ri(t) + vi(t+
∆t

2
)∆t, (2)

vi(t+∆t) = vi(t+
∆t

2
) +

Fi(t+∆t)

mi

∆t

2
. (3)

This scheme is well studied. The optimal properties of the scheme for molecular-dynamics
simulations was shown [20, 21].

Initial Setup *Initial Setup
Periodic Boundary Conditions Periodic Boundary Conditions
Compute Forces *Compute Forces

loop over N time steps: loop over N time steps:
Verlet Initial Integrate Verlet Initial Integrate
Periodic Boundary Conditions Periodic Boundary Conditions

*Particles exchange
Clear Forces Clear Forces
Compute Forces *Compute Forces
Verlet Final Integrate Verlet Final Integrate

(a) (b)

Figure 3. The pseudocode of the main loop of the MD program: (a) the atom decomposition parallelization; (b)
domain decomposition the parallelization.

5. IMPLEMENTATION
5.1. Program structure

The conceptual scheme of an MD simulation program is presented on Fig. 3. The Verlet scheme
is separated in two steps: Verlet Initial Integrate that corresponds to formulas (1), (2) and

Figure 4. The scheme of the threaded host-device (CPU – Epiphany) program for the Parallela board
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Verlet Final Integrate that corresponds to (3). Between these steps we update forces. This is
the most intensive part of the algorithm (it costs about 80% of the total computational time).

The difference between two algorithms on Fig. 3 is in the approaches to parallelism. In the
details, all functions are different in these two cases, but the key algorithmic differences are in the
steps “Initial Setup”, “Compute Force” and “Particles exchange” (highlighted by asterisk).

The current state of an MD model is represented as two arrays of structures. Since Epiphany is
a cacheless processor, it does not matter whether one use an array of structures or a structure of
arrays.

The fist structure contains 3 coordinates (a three-dimensional vector) and the ID of a particle,
which are needed to compute the interactions. The second structure contains 3 velocities and 3
forces, that are necessary for the evolution of the system. In single precision, it gives 40 bytes per
particle. The 32 KB of local memory in each core contains syscore, typically 4–20 KB of program
code, the stack and free memory, available by the OpenSHMEM memory management routines.
The memory management routines are atypical on Epiphany [18]. Theoretically, not more than 600
particles fit in 24 KB of memory per core of Epiphany. In practice, the program is stable up to 250
particles per core.

During the “Initial Setup” step (before the main loop) the MD data is loaded from the main global
memory to the local memory of each core of Epiphany. In the case of atom decomposition approach,
data for all the particles in the MD model are equally divided between the local core memory blocks
and remain there until the end of the calculation. In the case of domain decomposition approach,
each particle takes place in the memory of a core according to its coordinate in the MD simulation
box. To maintain this state, a “Particles exchange” communication is performed on each time step.
The force computation is adapted to the parallelization approach in both cases (see Algorithm 1
and Algorithm 2).

// Number of particles is predefined and the same on each processing element

const n = Total num. of particles / num. of PEs;
forall the processing elements of Epiphany do in parallel

my_ca = array of n particles coordinates vectors from this PE;
my_fa = array of n particles forces vectors from this PE;
forall the PE of Epiphany do

Select PE;
remote_ca = RDMA to coordinates vectors on selected PE;
for i = 0 to n do

r⃗1 = my_ca[i];
foreach r⃗2 in remote_ca do

distance = |r⃗1 − r⃗2|;
if distance ≤ r2c then

f = PairForce(distance);
my_fa[i] += f · (r⃗1 − r⃗2);

end
end

end
end

end
Algorithm 1: The parallel force computation loop in the case of atom decomposition approach

5.2. Parallelism
As it was mentioned above, the force computation loop takes about 80 % of the total time

to solution, thus the most of the effort is devoted to accelerating this part of the MD algorithm.
Fortunately, the natural parallelism in MD is that the force calculations and velocity/position
updates can be done simultaneously for all atoms [22]. To do this, the calculated equations must be
distributed among the processors. It is achieved in two popular ways, both of which are discussed
in more details below. The analysis of parallelism is limited by the following conditions:

LOBACHEVSKII JOURNAL OF MATHEMATICS
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forall the processing elements of Epiphany do in parallel
// Num. of particles varies on PEs and changes over time

n = num. of particles on this PE;
my_ca = array of particles coordinates vectors from this PE;
my_fa = array of particles forces vectors from this PE;
forall the PE neighboring to this PE do

Select PE;
remote_n = number of particles on selected PE;
remote_ca = RDMA to coordinates vectors on selected PE;
for i = 0 to length(my_ca) do

r⃗1 = my_ca[i];
foreach r⃗2 in remote_ca do

distance = |r⃗1 − r⃗2|;
if distance ≤ r2c then

f = PairForce(distance);
my_fa[i] += f · (r⃗1 − r⃗2);

end
end

end
end

end
Algorithm 2: The parallel force computation loop in the case of domain decomposition

approach

Figure 5. The atom decomposition scheme: an example for the case of two cores. Each box is a representation of
the whole computational domain in the memory of a core. The particles that are stored in the local memory of some
core are shown as filled circles. Particles that are accessed by the remote core via the network-on-chip interconnect

are shown as open circles. The potential cutoff radius in depicted around the same particle on both cores

1. The small amount of memory on a single core. We can not test a whole medium size
problem on a single core of Epiphany, the data must be “spread out” throughout the entire
computational field to solve the problem.

2. Only 16 cores are available the Epiphany-III chip that is used in this work.

It will be shown below that under such conditions the issue of parallelism in our case is closely
related to the algorithms of finding all atom pairs.

5.2.1. Atom decomposition. All particles are distributed among the cores, regardless of their
geometric positions in the model. Every core get a subgroup of atoms (Fig. 5), and processor
computes forces on its atoms no matter where they move in the course of the MD simulation.

At an every time step, “all-to-all” data exchanges are performed to search and receive coordinates
of neighbor particles, because interacting particles (i.e. located closely enough in the simulation box
at this time step) can be found on any other core. This communication provides not a significant load

LOBACHEVSKII JOURNAL OF MATHEMATICS
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Figure 6. The domain decomposition scheme. The white square is an area dedicated to a single core. The
light-gray squares represent the adjacent cores that contain the particles that can be located closely enough to

interact with particles on the core considered. The particles in the dark-gray area are too far from the considered
domain to contribute to the interparticle interactions. The circle represents a cut-off radius of the potential.

for the 16-cores Epiphany chip with very fast and low-latency NoC, but massive and frequent “all-
to-all” communications are a limiting factor for scalable algorithms. Thus they must be eliminated.

This approach is quite easy to implement on Epiphany with shared memory. While one has to
store identical copies of atoms information on all cores in a distributed memory system, information
replication is not required while using shared memory. On each time step, the atom information
from other processors is obtained by direct memory access in the force computation loop.
5.2.2. Domain decomposition. The MD simulation box is divided into blocks and each block is
assigned to one of the processors cores. All particles from a certain block are stored in the memory
of the corresponding core. As a particle moves through the MD simulation box, it passes to another
core. It is done in the “Particles exchange” part on each time step that is presented on Fig. 3 and
discussed in previous subsection 5.5.1. To calculate the interactions for particles on each core, it is
sufficient to make exchanges not with all cores but to communicate only with neighboring cores to
cover the cut-off radius of the potential (Fig. 6). It is shown in the comparison of Algorithm 1 and
Algorithm 2.

The benchmarking of two decomposition techniques and their comparison with popular MD code
LAMMPS [22] are represented on Fig. 7. The test model was configured for constant volume that
minimize difference between the cut-off radius rc and the domain decomposition block edge length
d. The number of atoms was varied by the change of density. The MD package LAMMPS was
run on single core of ARMv8 Cortex-A53 processor in double precision. It saves all data in the
main memory and thus have no parallelization overhead. On the other hand, Parallella has higher
peak performance and Epiphany-III uses single precision floating point arithmetic, so LAMMPS
timings should not be compared taking into account the differences of the peak performance. Loop
unrolling is very beneficial for acceleration of computation on Epiphany cores, however in this case
more local memory on each core is needed for the code itself and the maximum number of particles
in the MD model becomes lower.

The peak floating point performance of Epiphany (in single precision) is 19.2 GFlops that is
4 time higher than the peak floating point performance (in double precision) of one Cortex-A53
core considered. Our MD algorithm in single precision on Epiphany is 2.5 time faster on Epiphany
than the similar algorithm in LAMMPS running on a Cortex-A53 core. The non-ideal scaling with
respect to the peak floating point performance can be explained by the memory access limitation
on the Epiphany architecture.

5.3. Interference of parallelism and complexity reduction
There are two most common approaches to reduce the N2 complexity of N -body problems with

short-range potentials: the Verlet neighbor list method and the cell lists method. In modern MD
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Figure 7. The time-to-solution plotted versus the number of particles in the model. We present results for atom
decomposition and domain decomposition run on Parallella with Epiphany-III chip and the performance of

LAMMPS package on single core of ARMv8 Cortex-A53 core (Raspberry Pi 3)

packages, the combination of these two methods is used usually to achieve better performance.
Neighbor lists require huge amount of extra memory, thus they are not applicable on Epiphany
due to strict memory limitations. Cell lists are implemented for the Epiphany MD code in the
framework of this study. For the atom decomposition parallelization method, the use of the cell
lists for particles on all cores simultaneously is not effective due to the low number of particles on
separate cores.

There is a reasonable relation between the parameters of the LJ potential, the cut-off radius and
the density of particles in the MD model. The number of particles that fits into the memory of a
single core is also given. In this way, the range of the most frequent block edge lengths (d) in the
domain decomposition method is determined.

In the case of d ≫ rc, it is effective to implement separate complexity reduction algorithm. In
the case of Epiphany, d is relatively close to rc, and the division of particles into the cells is naturally
maintained by the domain decomposition algorithm. If we implement both domain decomposition
and cell linked-list algorithms, we have to pay a full cost for the latter in terms of computer time,
while it does not bring much time saving.

Without additional cell lists on every time step, a core just gets the information only from itself
and from nearest cores (e.g. for 2D projection there are 8 neighbour cores, Fig. 6). In this way,
instead of computation of N ∗N pair forces, we reduce this number to N ∗ (N ∗ 9/16). However, it
still has non-linear complexity, that is shown of Fig. 7. But for the given configuration, it is more
effective than the classic close-to-linear algorithm with a much higher time-to-solution.

Since in our configuration we have very few data exchanges, the key difference in time-to-
solution between atom-decomposition and domain-decomposition comes from reduction of number
of distance computations due to the linked-cell mechanics naturally included in our domain-
decomposition implementation.

LOBACHEVSKII JOURNAL OF MATHEMATICS
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Figure 9. The normalized averaged divergences of coordinates and velocities on two trajectories calculated from
identical initial conditions with LAMMPS and with our code. The exponential dependence with a further

saturation regime is well explained by the stochastic theory of molecular dynamics [23, 24] and confirms the
correctness of the program

5.4. Verification
The verification of our prototype program is one of the most important steps in the development.

We used few simple criteria:

1. A constant level of the average total energy:

Up =
∑
i<j

U(ri, rj), Uk =
∑
i

mivi
2

2
, Utotal = Uk + Up ≈ const.

In MD simulation, the total energy oscillates with some acceptable accuracy (Fig. 8). This
criteria is very basic, but it is quite sensitive and allow to detect many mistakes.
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2. The comparison of the potential energy time evolution with an a priory correct program
results (we use the popular package LAMMPS [22]). The potential energy is a function of all
particles positions and at the same time it represents a macroscopic value. It shows a perfect
agreement for a short period of time (Fig. 10) but then diverges according to stochastic theory
of MD [23].

3. The direct comparison of the resulting coordinates or velocities of atoms with the coordinates
or velocities, calculated by the reference program with the same initial conditions and the
same time step (Fig. 9):

< ∆r(t) >=
1

N

N∑
i=1

(ri(t)− r′i(t))
2, < ∆v(t) >=

1

N

N∑
i=1

(vi(t)− v′
i(t))

2.

Once we meet these criteria, one may be sure that the new simulation code implements the
same mathematical model as the reference code. The exponential divergence of trajectories is the
well-studied effect associated with numerical instability of the molecular dynamics trajectories.

By default, LAMMPS performs calculation in double precision floating-point arithmetic, while
Parallella with Epiphany-III supports only single precision hardware accelerated arithmetic.
Hardware double precision is implemented in the newer models of Epiphany only. Single precision
MD is implemented in most packages (e.g. LAMMPS, GROMACS, HOOMD). Single precision is
sufficient for MD simulations. It is especially useful for calculations on desktop-level GPUs, which
have limited double-precision performance. That is why the Epiphany-III chip limitation of floating
point operations in single precision only is not crucial for the MD algorithm.

6. CONCLUSIONS & FUTURE WORK
We described the OpenSHMEM implementation for the Epiphany architecture of the domain-

decomposition parallelization for a generic molecular dynamics algorithm with the short-ranged
Lennard-Jones potential. The correctness of the new algorithm was verified by the comparison
with the same model calculation with LAMMPS. The difference between the resulting trajectories
corresponds to the machine precision. It was shown that manual loop unrolling speeds up algorithm
significantly. The comparison with LAMMPS running on a single ARMv8 Cortex-A53 core shows
that the algorithm for Epiphany running on all 16 cores is 2.5 times faster.

Despite being very simple, the Epiphany processor can be considered as a prototype of future
CPUs for exascale systems. For example, Epiphany has similarities with the SW26010 processor
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of the Sunway TaihuLight supercomputer. That is why the development of parallel algorithms for
the Epiphany architecture can be considered in a wider perspective of the general development of
future supercomputer technologies.
Acknowledgments. The study has been funded by the Russian Science Foundation (grant No. 14-
50-00124).
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