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Abstract—In this paper are considered the questions of unique solvability and redefinitions of a
nonlocal inverse problem for the Fredholm integro-differential equation of the second order with
degenerate kernel, integral condition, and spectral parameter. Calculations of the value of the
spectral parameter are reduced to the solve of trigonometric equations. Systems of algebraic
equations are obtained. The singularities that arose in determining arbitrary constants are studied.
A criterion for unique solvability of the problem is established and the corresponding theorem is
proved.
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1. PROBLEM STATEMENT
Mathematical modeling of many processes occurring in the real world often leads to the study of initial

or inverse boundary value problems for ordinary differential and integro-differential equations. Integro-
differential equations are mathematical models of the flow of many physical processes and the operation
of technical systems (see, for example, [1]). In the cases, where the boundary of the flow domain of a
physical process is not available for measurements, nonlocal conditions in integral form can serve as an
additional information sufficiently for one-valued solvability of the problem. A large number of papers
have been devoted to the study of integro-differential equations (see, for example, [2]–[9]).

In this paper we consider singularities in solving nonlocal inverse boundary value problem for the
ordinary Fredholm integro-differential equation with degenerate kernel, integral condition and spectral
parameter. The values of spectral parameter are calculated and for which the solvability of the inverse
boundary value problem is established. Standard methods for solving the integro-differential equation do
not pass here. Integro-differential equations with a degenerate kernel for other formulation of problems
were considered, in particular, in [10]–[14].

Thus, on a segment [0;T ] we consider an equation of the form

u′′(t) + λ 2 u(t) = ν

T∫
0

K (t, s)u (s) ds+ β α (t) (1)

under the following conditions

u(T ) =

T∫
0

u (t) t dt, u′(T ) = ϕ, (2)
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u (0) = r, (3)

where 0 < T <∞ is given real number, λ is positive spectral parameter, ν is real nonzero parameter,

ϕ, r = const , β is the coefficient of redefinition, α (t) ∈ C[0;T ], K(t, s) =
k∑
i=1

a i(t) b i(s), a i(t) ∈

C[0;T ], b i(s) ∈ C[0;T ]. Here it is assumed that the nonzero functions a i(t) and b i(s) are linearly
independent.

The question of the uniqueness of the solution of the inverse problem (1)–(3) reduces to the question
of the triviality of solution of the homogeneous integro-differential equation under the homogeneous
condition u′(T ) = 0.

2. CONSTRUCTION OF SOLUTION OF THE DIRECT BOUNDARY VALUE PROBLEM
(1), (2)

Taking the degeneracy of the kernel into account, we write the equation (1) in the following form

u′′ (t) + λ 2 u (t) = ν

T∫
0

k∑
i=1

a i(t) b i(s)u (s) ds+ β α (t). (4)

By the aid of notation

τ i =

T∫
0

b i(s)u (s) ds (5)

the equation (4) is rewritten as follows

u′′ (t) + λ 2 u (t) = ν
k∑
i=1

a i(t) τ i + β α (t). (6)

Differential equation (6) is solved by the method of variation of arbitrary constants

u (t) = A 1 cos λ t+A 2 sin λ t+ η (t), (7)

where A 1, A 2 while arbitrary constants,

η (t) =
ν

λ

k∑
i=1

τ i h i (t) +
β

λ
δ 1 (t), h i (t) =

t∫
0

sin λ (t− s) a i(s) ds, i = 1, k,

δ 1 (t) =

t∫
0

sin λ (t− s)α (s) ds.

In order to find the unknown coefficients A 1 and A 2 in (7) we use the first condition from (2) and there
we arrive at equality

A 1 σ 1(λ) = −A 2 σ 2(λ) + ξ 0, (8)

where

σ 1(λ) =
(

1 +
1

λ 2

)
cos λT − T

λ
sin λT +

1

λ 2
, σ 2(λ) =

(
1 +

1

λ 2

)
sin λT +

T

λ
cos λT,

ξ 0 =

T∫
0

η(t) t d t− η(T ).

LOBACHEVSKII JOURNAL OF MATHEMATICS



ON INVERSE BOUNDARY VALUE PROBLEM 3

2.1. Case 1

In (8), we assume that

σ 1(λ) = σ 2(λ) = 0. (9)

Then we arrive at the trivial result: ξ 0 = 0, i.e. ν = β = 0. In this case the corresponding model
differential equation u′′(t) + λ 2 u (t) = 0 has an infinite set of solutions u (t) = Ã 1 cos λ t+ Ã 2 sin λ t,
where Ã 1, Ã 2 are arbitrary constants.

We calculate the values of the parameter λ, for which (9) takes plase. Let be

σ 1(λ) =
(

1 +
1

λ 2

)
cos λT − T

λ
sin λT +

1

λ 2
= 0

for some λ. This condition is equivalent to equation
(
1 + λ 2

)
cos λT − λT sin λT + 1 = 0, which has

solutions

λn =
1 + (−1)n

T
arcsin

1 + λ 2
n√(

1 + λ 2
n

) 2
+ λ 2

n T
2

+
π n

T
, n ∈ N, (10)

where N is the set of natural numbers. The formula (10) is a transcendent equation with respect to λn.
It can be solved by the method of successive approximations

λn, µ+1 =
1 + (−1)n

T
arcsin

1 + λ 2
n, µ√(

1 + λ 2
n, µ

) 2
+ λ 2

n, µ T
2

+
π n

T
, n ∈ N, µ = 1, 2, . . .

or graphically x = λn,

x =
1 + (−1)n

T
arcsin y (λn) +

π n

T
,

were y (λn) =
1 + λ 2

n√(
1 + λ 2

n

) 2
+ λ 2

n T
2

.

Suppose now, that for some λ the following equality holds σ 2(λ) =
(

1 +
1

λ 2

)
sin λT +

T

λ
cos λT = 0. This condition is equivalent to the trigonometric equation tan λT = − λT

1 + λ 2
. Hence

we obtain solutions:

λn = − 1

T
arctan

λn T

1 + λ 2
n

+
π n

T
, n ∈ N. (11)

The second formula in (11) is a transcendent equation with respect to λn. It can be also solved by the
method of successive approximations or graphically.

The set of all values of the parameter λn, defined by (11), we denote by Λ 1. The set of all values of
the parameter λn, defined by (10), we denote by Λ 2. Total number of parameter values λn is countable.
Since 0� T <∞, then Λ 1 ∩ Λ 2 = ∅. So, the function u (t) = Ã 1 cos λ t+ Ã 2 sin λ t can not be a
solution of the boundary value problem (1), (2). Consequently, the boundary value problem (1), (2) does
not have solutions in this case.

Thus, the following lemma is proved.

Lemma 1. Suppose that conditions (9) are fulfilled. Then the boundary value problem (1), (2) has
no solutions on the segment [0; T ] .
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2.2. Case 2

Suppose that

σ 1(λn) 6= 0, σ 2(λn) = 0. (12)

Then for the values of the spectral parameter λn ∈ Λ 1 we construct the solution of the direct boundary

value problem (1), (2). By virtue of (12), from (8) we obtain that A 1 =
ξ 0

σ 1 (λn)
and A 2 is an arbitrary

number. Since the spectrum of the parameter λn consists the set Λ 1, defined by formula (11), the
function (7) takes the form

u (t, λn) =
ξ 0

σ 1 (λn)
cos λn t+A 2 sin λn t+ η (t). (13)

Taking

ξ 0 =

T∫
0

η(t) t dt− η(T ), η (t) =
ν

λn

k∑
i=1

τ i h i (t) +
β

λn
δ 1 (t),

h i (t) =

t∫
0

sin λ (t− s) a i(s) ds, i = 1, k, δ 1 (t) =

t∫
0

sin λ (t− s)α (s) ds

into account we transform the expression (13)

u (t, λn) = A 2 sin λn t+
ν

λn

k∑
i=1

τ i ξ i (t) +
β

λn
δ 0 (t), (14)

where

ξ i (t) =
cos λn t

σ 1 (λn)

[ T∫
0

h i (t) t dt− h i (T )

]
+ h i (t), i = 1, k,

δ 0 (t) =
cos λn t

σ 1 (λn)

[ T∫
0

δ 1 (t) t dt− δ 1 (T )

]
+ δ 1 (t).

Substituting (14) into (5), we arrive at the system of algebraic equations (SAE)

τ i −
ν

λn

k∑
j=1

τ j H i j = A 2 Φ i +
β

λn
B i, i = 1, k, (15)

where H i j =
T∫
0

b i(s) ξ j (s) ds, Φ i =
T∫
0

b i(s) sin λn s ds, B i =
T∫
0

b i(s) δ 0 (s) ds.

SAE (15) is uniquely solvable for any finite right-hand side, if fulfilled the following condition

∆ 1(ν, λn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− ν

λn
H 11

ν

λn
H 12 . . .

ν

λn
H 1k

ν

λn
H 21 1− ν

λn
H 22 . . .

ν

λn
H 2k

...
...

. . .
...

ν

λn
H k1

ν

λn
H k2 . . . 1− ν

λ
H kk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0. (16)
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The determinant ∆ 1(ν, λn) in (16) is a polynomial with respect to ν/λn of the degree not higher
than k. So the equation ∆ 1(ν, λn) = 0 has no more than k different roots. We denote them by µm,
1 ≤ m ≤ k. Then ν = λn µm are called the characteristic numbers (eigenvalues) of the kernel of the
integro-differential equation (1). For other values ν 6= λn µm solutions of SAE (15) are written in the
form

τ i = A 2
∆ 1i(ν, λn)

∆ 1(ν, λn)
+

β

λn

∆ 2i(ν, λn)

∆ 1(ν, λn)
, i = 1, k,

where

∆ 1i(ν, λn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− ν

λn
H11 . . .

ν

λn
H1(i−1) Φ 1

ν

λn
H1(i+1) . . .

ν

λn
H1k

ν

λn
H21 . . .

ν

λn
H2(i−1) Φ 2

ν

λn
H2(i+1) . . .

ν

λn
H2k

...
...

...
...

...
. . .

...
ν

λn
Hk1 . . .

ν

λn
Hk(i−1) Φ k

ν

λn
Hk(i+1) . . . 1− ν

λn
Hkk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

while the determinant ∆ 2i(ν, λn) differs from ∆ 1i(ν, λn) that the column Φ i in it is replaced by B i.
Substituting values of τ i from last expression into (14), we derive

u (t, λn) = A 2

[
sin λn t+

ν

λn

k∑
i=1

∆ 1i(ν, λn)

∆ 1(ν, λn)
ξ i (t)

]
+

β

λn

[
ν

λn

k∑
i=1

∆ 2i(ν, λn)

∆ 1(ν, λn)
ξ i (t) + δ 0 (t)

]
.

(17)

In order to uniquely determine A 2 we use the second condition in (2).

A 2 =
ϕ

M ′1n (T, λn)
− βM

′
2n (T, λn)

M ′1n (T, λn)
,

where

M 1n (t, λn) = sin λn t+
ν

λn

k∑
i=1

∆ 1i(ν, λn)

∆ 1(ν, λn)
ξ i (t),

M 2n (t, λn) =
ν

λn

k∑
i=1

∆ 2i(ν, λn)

∆ 1(ν, λn)
ξ i (t) + δ 0 (t),

M ′1n (T, λn) = λn cos λn T +
ν

λn

k∑
i=1

∆ 1i(ν, λn)

∆ 1(ν, λn)
ξ′i (T ),

M ′2n (T, λn) =
ν

λn

k∑
i=1

∆ 2i(ν, λn)

∆ 1(ν, λn)
ξ′i (T ) + δ′0 (T ),

ξ′i (T ) = h′i (T )− λn sin λn T

σ 1 (λn)

 T∫
0

h i (t) t dt− h i (T )

 ,

δ′0 (T ) = δ′1 (T )− λn sin λn t

σ 1 (λn)

 T∫
0

δ 1 (t) t dt− δ 1 (T )

 ,
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h′i (T ) = λn

T∫
0

cos λn (T − s) a i (s) ds, δ′1 (T ) = λn

T∫
0

cos λn (T − s)α (s) ds.

It is easy to see thatM ′1n (T, λn) 6= 0, λn ∈ Λ 1. Now from (17) we derive the solution of the boundary
value problem (1), (2)

u (t, λn) = ϕV 1n (t, λn) + βW 1n (t, λn), λn ∈ Λ 1, t ∈ [0; T ], (18)

where

V 1n (t, λn) =
M 1n (t, λn)

M ′1n (T, λn)
, W 1n (t, λn) = M 2n (t, λn)−M 1n (t, λn)

M ′2n (T, λn)

M ′1n (T, λn)
.

The uniqueness of the solution of the boundary value problem (1), (2) follows from that for ϕ = 0 and
β = 0 it takes place u (t, λn) ≡ 0 for all t ∈ [0; T ] and λ ∈ Λ 1.

Thus, the following lemma is proved.

Lemma 2. Let be conditions (12) are fulfilled. Then on the segment [0; T ] for all values of
parameter λn ∈ Λ 1 the boundary value problem (1), (2) has a unique solution in the form of (18),
if condition (16) is fulfilled.

2.3. Case 3

We assume that

σ 1(λn) = 0, σ 2(λn) 6= 0. (19)

Then for the values of the spectral parameter λn ∈ Λ 2 we construct the solution of the direct boundary
value problem (1), (2). By virtue of condition (19), from (8) we obtain thatA 1 is an arbitrary number and

A 2 =
ξ 0

σ 2 (λn)
. Since the spectrum of the parameter λn consists of the set Λ 2, defined by formula (10),

function (7) in this case takes the form

u (t, λn) = A 1 cos λn t+
ν

λn

k∑
i=1

τ i ζ i (t) +
β

λn
δ 2 (t), (20)

where

ζ i (t) = h i (t) +
sin λn t

σ 2 (λn)

 T∫
0

h i (t) t dt− h i (T )

 , i = 1, k,

δ 2 (t) = δ 1 (t) +
sin λn t

σ 2 (λn)

 T∫
0

δ 1 (t) t dt− δ 1 (T )

 .
Substituting (20) into (5), we arrive at the system of algebraic equations (SAE)

τ i −
ν

λn

k∑
j=1

τ j P i j = A 1 Ψ i +
β

λn
C i, i = 1, k, (21)

where

P i j =

T∫
0

b i(s) ζ j (s) ds, Ψ i =

T∫
0

b i(s) cos λn s ds, C i =

T∫
0

b i(s) δ 2 (s) ds.
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SAE (21) is uniquely solvable for any finite right-hand side, if fulfilled the following condition

∆ 3(ν, λn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− ν

λn
P 11

ν

λn
P 12 . . .

ν

λn
P 1k

ν

λn
P 21 1− ν

λn
P 22 . . .

ν

λn
P 2k

...
...

. . .
...

ν

λn
P k1

ν

λn
P k2 . . . 1− ν

λ
P kk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0. (22)

The determinant ∆ 3(ν, λn) in (22) is a polynomial with respect to ν/λn of the degree at most k.
The equation ∆ 3(ν, λn) = 0 has at most k different roots. We denote them by ωm, 1 ≤ m ≤ k. Then
ν = λn ωm are the characteristic numbers of the kernel of the integro-differential equation (1). For other
values ν 6= λn ωm the solutions of SAE (21) are written in the form

τ i = A 1
∆ 3i(ν, λn)

∆ 3(ν, λn)
+

β

λn

∆ 4i(ν, λn)

∆ 3(ν, λn)
, i = 1, k, (23)

where

∆ 3i(ν, λn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− ν

λn
P11 . . .

ν

λn
P1(i−1) Ψ 1

ν

λn
P1(i+1) . . .

ν

λn
P1k

ν

λn
P21 . . .

ν

λn
P2(i−1) Ψ 2

ν

λn
P2(i+1) . . .

ν

λn
P2k

...
...

...
...

...
. . .

...
ν

λn
Pk1 . . .

ν

λn
Pk(i−1) Ψ k

ν

λn
Pk(i+1) . . . 1− ν

λn
Pkk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

while the determinant ∆ 4i(ν, λn) differs from ∆ 3i(ν, λn) that the column Ψ i in it is replaced by C i.
Substituting (23) into (20), we obtain

u (t, λn) = A 1G 1n (t, λn) + β G 2n (t, λn), (24)

where

G 1n (t, λn) = cos λn t+
ν

λn

k∑
i=1

∆ 3i(ν, λn)

∆ 3(ν, λn)
ζ i (t),

G 2n (t, λn) = δ 2 (t) +
ν

λn

k∑
i=1

∆ 4i(ν, λn)

∆ 3(ν, λn)
ζ i (t).

In order to uniquely determine A 1 we use the second condition in (2). Then from (24) we obtain a
unique solution of the boundary value problem (1), (2)

u (t, λn) = ϕV 2n (t, λn) + βW 2n (t, λn), λn ∈ Λ 2, t ∈ [0; T ], (25)

where

V 2n (t, λn) =
G 1n (t, λn)

G′1n (T, λn)
, W 2n (t, λn) = G 2n (t, λn)−G 1n (t, λn)

G′2n (T, λn)

G′1n (T, λn)
,

G′1n (T, λn) =
ν

λn

k∑
i=1

∆ 3i(ν, λn)

∆ 3(ν, λn)
ζ ′i (T )− λn sin λn T 6= 0, λn ∈ Λ 2.

The uniqueness of the solution of the boundary value problem (1), (2) follows from (25) that for ϕ = 0
and β = 0 it takes place u (t, λn) ≡ 0 for all t ∈ [0; T ] and λ ∈ Λ 2.

Thus, the following lemma is proved.
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Lemma 3. Let be conditions (19) are fulfilled. Then on the segment [0; T ] for all values of
parameter λn ∈ Λ 2 the boundary value problem (1), (2) has a unique solution in the form of (25),
if condition (22) is fulfilled.

2.4. Case 4

Suppose that

σ 1(λn) 6= 0, σ 2(λn) 6= 0. (26)

Then for the values of the spectral parameter λn ∈ Λ 3 = (0; ∞) \ (Λ 1 ∪ Λ 2) we construct the solution
of the direct boundary value problem (1), (2). By virtue of condition (26), from (8) we obtain that

u (t, λn) = A 2

[
−σ 2(λn)

σ 1(λn)
cos λn t+ sin λn t

]
+ ς (t), (27)

where ς (t) =
ξ 0

σ 1 (λn)
cosλn t+ η (t). Now we use the second condition in (2) and from (27) we obtain

that

ϕ = u′ (t, λn)t=T = λnA 2

[
σ 2(λn)

σ 1(λn)
sin λn T + cos λn T

]
+ ς ′ (T ) =

A 2

λn

σ 3(λn)

σ 1(λn)
+ ς ′ (T ), (28)

where σ 3(λn) = 1 + λ 2
n + cos λn T .

Since λn > 0, then σ 3(λn) > 0 and we can uniquely find the unknown coefficient A 2 from (28)

A 2 = λn
σ 1(λn)

σ 2(λn)

(
ϕ− ς ′ (T )

)
. (29)

Substituting (29) into (27), we obtain

u (t, λn) = λn ϕ δ 3 (t) +
ν

λn

k∑
i=1

τ iD i (t) +
β

λn
E (t), (30)

where

D i (t) = h i (t) + δ 4 (t)

T∫
0

h i (t) t dt− δ 4 (t)h i (T )− λn δ 3 (t)h′i (T ),

E (t) = δ 1 (t) + δ 4 (t)

T∫
0

δ 1 (t) t dt− δ 4 (t) δ 1 (T )− λn δ 3 (t) δ′1 (T ),

δ 3 (t) = −σ 2(λn)

σ 3(λn)
cos λn t+

σ 1(λn)

σ 3(λn)
sin λn t,

δ 4 (t) =
cos λn t

σ 1(λn)
+
λ 2
n δ 3 (t)

σ 1(λn)
sin λn T, h i (t) =

t∫
0

sin λn (t− s) a i (s) ds, i = 1, k,

δ 1 (t) =

t∫
0

sin λn (t− s)α (s) ds.
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Substituting (30) into (5), we obtain a system of algebraic equations (SAE)

τ i −
ν

λn

k∑
j=1

τ j Q i j = ϕF 1i +
β

λn
F 2i, i = 1, k, (31)

where Q i j =
T∫
0

b i(s)D j (s) ds, F 1i = λn
T∫
0

b i(s) δ 3 (s) ds, F 2i =
T∫
0

b i(s)E (s) ds.

SAE (31) is uniquely solvable for any finite right-hand sides, if the following condition is fulfilled

∆ 5(ν, λn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− ν

λn
Q 11

ν

λn
Q 12 . . .

ν

λn
Q 1k

ν

λn
Q 21 1− ν

λn
Q 22 . . .

ν

λn
Q 2k

...
...

. . .
...

ν

λn
Q k1

ν

λn
Q k2 . . . 1− ν

λn
Q kk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0. (32)

Then the solutions of SAE (31) are written in the form

τ i = ϕ
∆ 5i(ν, λn)

∆ 5(ν, λn)
+

β

λn

∆ 6i(ν, λn)

∆ 5(ν, λn)
, i = 1, k, (33)

where

∆ (4+j)i(ν, λn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− ν

λn
Q11 . . .

ν

λn
Q1(i−1) F j1

ν

λn
Q1(i+1) . . .

ν

λn
Q1k

ν

λn
Q21 . . .

ν

λn
Q2(i−1) F j2

ν

λn
Q2(i+1) . . .

ν

λn
Q2k

...
...

...
...

...
. . .

...
ν

λn
Qk1 . . .

ν

λn
Qk(i−1) F jk

ν

λn
Qk(i+1) . . . 1− ν

λn
Qkk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, j = 1, 2.

Substituting (33) into (30), we obtain

u (t, λn) = ϕV 3n (t, λn) + β W 3n (t, λn), λn ∈ Λ 3, (34)

where

V 3n (t, λn) = λn δ 3 (t) +
ν

λn

k∑
i=1

∆ 5i(ν, λn)

∆ 5(ν, λn)
D i (t),

W 3n (t, λn) =
E (t)

λn
+

ν

λ 2
n

k∑
i=1

∆ 6i(ν, λn)

∆ 5(ν, λn)
D i (t).

Now we assume that ϕ = 0 and β = 0. Then it follows from (34) that u (t, λn) ≡ 0 for all λn ∈ Λ 3,
t ∈ [0; T ]. Hence implies uniqueness of the solution of the boundary value problem (1), (2) in this case.

Thus, the following lemma is proved.

Lemma 4. Let conditions (26) are fulfilled. Then on the segment [0; T ] for all values of the
parameter λn ∈ Λ 3 the boundary value problem (1), (2) has a unique solution in the form of the
function (34), if condition (32) is fulfilled.

3. SOLVABILITY OF THE INVERSE BOUNDARY VALUE PROBLEM (1)–(3)

Using the lemmas proved above and condition (3), from (18), (25) and (34) we obtain that

r = ϕVmn (0, λn) + β Wmn (0, λn), λn ∈ Λm, m = 1, 2, 3. (35)
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From (35) we uniquely determine the redefinition coefficient

β =
r − ϕVmn (0, λn)

Wmn (0, λn)
, Wmn (0, λn) 6= 0, λn ∈ Λm, m = 1, 2, 3. (36)

Substituting (36) into (18), (25), and (34) we finally have for the unknown function

u (t, λn) = ϕVmn (t, λn) +Wmn (t, λn)
r − ϕVmn (0, λn)

Wmn (0, λn)
, (37)

λn ∈ Λm, m = 1, 2, 3. Thus we have proved that the following theorem holds.

Theorem 1. The inverse boundary value problem (1)–(3) is uniquely solvable for λn ∈ Λm,
m = 1, 2, 3 on a finite interval [0; T ], if the following condition is fulfilled: condition (16) in the
case m = 1; condition (22) in the case m = 2; condition (32) in the case m = 3. The solution of
this problem is determined by formulas (36) and (37).
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