

Федеральное государственное бюджетное учреждение науки Институт нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения Российской академии наук (ИНГГ СО РАН)

Об определении тензора коэффициентов абсолютной проницаемости анизотропных коллекторов при использовании результатов прямого и обратного математического моделирования

к.ф.-м.н. Марков Сергей Игоревич ^{1,2}

¹ Новосибирский государственный технический университет ² Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН

ВХОДНЫЕ ДАННЫЕ

Применяется дискретная геометрическая модель образца геологической породы, полученная при использовании методов неразрушающей визуализации (набор послойных изображений после рентгеновской томографии) и методов морфологического моделирования

Изображение в градациях серого

Граница раздела сред

На уровне каждого скана:

- Фильтрация шума, повышение резкости
- Сегментация (пороговые критерии, нейронные сети, и т.д.)
- Выделение контуров

Nikitin, V. V., Dugarov, G. A., Duchkov, A. A., Fokin, M. I., Drobchik, A. N., Shevchenko, P. D., ... & Mokso, R. (2020). Dynamic in-situ imaging of methane hydrate formation and self-preservation in porous media. *Marine and Petroleum Geology*, *115*, 104234.

Nikitin, V. V., Fokin, M. I., Dugarov, G. A., Drobchik, A. N., De Andrade, V., Shevchenko, P. D., ... & Duchkov, A. A. (2021). Dynamic in situ imaging of methane hydrate formation in coal media. *Fuel*, *298*, 120699.

Сегментация на конечное число фаз

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

- Геометрическая многомасштабность
- Высокая контрастность физических свойств среды
- Нелинейная зависимость физических свойств и полей
- Подвижные границы

Вычислительная схема должна учитывать особенности решаемой задачи и естественных образом сохранять свойство глобальной регулярности математических моделей физических процессов на дискретном уровне

МЕТОДЫ КОНЕЧНЫХ ЭЛЕМЕНТОВ

КОНФОРМНЫЕ МЕТОДЫ

 Классический метод Галёркина Теоретическое обоснование метода принадлежит М. В. Келдышу (1942)

ФУНКЦИОНАЛЬНОЕ СВОЙСТВО КОНФОРМНОСТИ

H^1	непрерывность следа скалярной функции на межэлементной границе
H(rot)	непрерывность следа тангенциальной составляющей векторной функции на межэлементной границе
H(div)	непрерывность следа нормальной составляющей векторной функции на межэлементной границе
L ² (Ω)	не существует

ГЕОМЕТРИЧЕСКОЕ СВОЙСТВО КОНФОРМНОСТИ

Отсутствие «висячих» узлов в конечноэлементной сетке

НЕКОНФОРМНЫЕ МЕТОДЫ

- Разрывный метод Галёркина предложен для решения задачи переноса нейтронов Reed и Hill (1973)
- Разрывный метод Петрова-Галёркина
 L. Demkowicz (1986)
- Немортарный метод конечных элементов
 T. Arbogast (1997)
- Расширенный метод конечных элементов P. Belytschko (1999)
- Гетерогенный многомасштабный метод конечных элементов
 B. Engquist (2002)
- Обощённый метод конечных элементов
 I. Babuska (2002)
- Многомасштабный разрывный метод Галёркина T.J.R. Hughes (2003)
- Residual Distribution Method Remi Abgrall (2009)
- Виртуальный метод конечных элементов F. Brezzi and L.D. Marini (2012)
- Слабый метод Галёркина
 J. Wang (2013)

Также существуют разные гибридные формы вычислительных схем, адаптированные к конкретному классу задач

ВЫЧИСЛЕНИЕ АБСОЛЮТНОЙ ПРОНИЦАЕМОСТИ

параметры модели однофазной фильтрации – решение обратной коэффициентной задачи

Каневская Р.Д. *Математическое моделирование гидродинамических процессов разработки месторождений углеводородов*. М.: Институт компьютерных исследований, 2002. – 140 с.

Марков С.И., Иткина Н.Б. *Многомасштабное моделирование процесса просачивания однофазного флюида в пористых средах* // Сибирские электронные математические известия. - 2018. – № 15. – С. 115–134.

О ФЕНОМЕНОЛОГИЧЕСКИХ МОДЕЛЯХ

Закон Дарси и модификации

$$\nabla \cdot \left\langle \mathbf{v} \right\rangle = \mathbf{0}$$
$$\mu \mathbf{K}^{-1} \left\langle \mathbf{v} \right\rangle = \nabla \left\langle p \right\rangle - \rho \mathbf{g}$$

К – тензор абсолютной проницаемости v – поверхностная усреднённая скорость *p* – усреднённое внутреннее давление µ – динамическая вязкость

- Медленные течения в гомогенных пористых средах
- Размер пор соизмерим с размером образца
- Высокая скорость просачивания (Re > 100)
- Капиллярные явления

Уточнение по Бринкману

$$\mu \mathbf{K}^{-1} \langle \mathbf{v} \rangle \ll \mu \nabla^{2} \langle \tilde{\mathbf{v}} \rangle$$
$$\mu \mathbf{K}^{-1} \langle \mathbf{v} \rangle = \nabla \langle p \rangle - \rho \mathbf{g} + \mu \nabla^{2} \langle \tilde{\mathbf{v}} \rangle$$

- К тензор абсолютной проницаемости
- v поверхностная усреднённая скорость
- $ilde{\mathbf{v}}$ внутренняя усреднённая скорость
- *p*-усреднённое внутреннее давление
- µ динамическая вязкость
 - Медленные течения в гетерогенных пористых средах
 - Размер пор соизмерим с размером образца
 - ✓ Высокая скорость просачивания (Re > 100)
- Капиллярные явления

ПРОЦЕСС ПРОСАЧИВАНИЯ В ГЕТЕРОГЕННОЙ ПОРИСТОЙ СРЕДЕ

Уравнения движения $\nabla p_1 = \nabla \cdot \mu \left(\nabla \mathbf{v}_1 + \left(\nabla \mathbf{v}_1 \right)^T \right) + \rho \mathbf{g}$ $\mathbf{v}_2 = -\frac{\mathbf{k}}{\mu} \cdot \left(\nabla p_2 + \rho \mathbf{g} \right)$

Уравнения неразрывности

$$\nabla \cdot \mathbf{v}_1 = \mathbf{0}, \, \nabla \cdot \mathbf{v}_2 = \mathbf{0}$$

Интерфейсные условия

$$\mathbf{v}_{1} \cdot \mathbf{n}_{12} \big|_{\Gamma_{12}} = \mathbf{v}_{2} \cdot \mathbf{n}_{12} \big|_{\Gamma_{12}}$$
$$p_{1} - \mu \Big[\Big(\nabla \mathbf{v}_{1} + \big(\nabla \mathbf{v}_{1} \big)^{T} \Big) \cdot \mathbf{n}_{12} \Big] \cdot \mathbf{n}_{12} = p_{2}$$

Краевые условия

$$\begin{pmatrix} -p_1 \mathbf{I} + \mu \left(\nabla \mathbf{v}_1 + \nabla^T \mathbf{v}_1 \right) \end{pmatrix} \cdot \mathbf{n} \Big|_{\Gamma_1} = \tilde{p} \mathbf{n} \\ \mathbf{v}_1 \Big|_{\Gamma_2} = \mathbf{0} \\ \begin{pmatrix} -p_1 \mathbf{I} + \mu \left(\nabla \mathbf{v}_1 + \nabla^T \mathbf{v}_1 \right) \end{pmatrix} \cdot \mathbf{n} \Big|_{\Gamma_3} = \mathbf{0} \\ p_2 \Big|_{\Gamma_1} = \tilde{p}, \ \mathbf{v}_2 \cdot \mathbf{n} \Big|_{\Gamma_2} = \mathbf{0}, \ p_2 \Big|_{\Gamma_3} = \mathbf{0}$$

Предположения:

- флюид является ньютоновским
- у закон Бивера-Джозефа-Саффмана

$$\mathbf{v}_{1} \cdot \boldsymbol{\tau}_{12} \big|_{\Gamma_{12}} = -m \left[\left(\nabla \mathbf{v}_{1} + \left(\nabla \mathbf{v}_{1} \right)^{T} \right) \cdot \mathbf{n}_{12} \right] \cdot \boldsymbol{\tau}_{12} \Big|_{\Gamma_{12}}$$

Обозначения:

- \mathbf{v}_1- скорость флюида в каверне (м/с)
- \mathbf{v}_2- скорость просачивания (м/с)
- р₁ давление флюида в каверне (Па)
- p_2- давление флюида в пористой среде (Па)
- **k** абсолютная проницаемость (м²)
- µ динамическая вязкость (Па•с)
- ρ плотность флюида (кг/м³)
- g ускорение свободного падения (м/с²)
- т *m* параметр трения
- Г₁₂ граница каверны и пористой среды
- Γ_1- граница втекания
- Γ_2- непроницаемая граница
- Г₃-граница вытекания
- $\mathbf{\Omega}_1-$ каверна с флюидом
- $\Omega_2^{}-$ пористая среда

ВАРИАЦИОННАЯ ФОМУЛИРОВКА РАЗРЫВНОГО МЕТОДА ГАЛЁРКИНА

найти
$$\mathbf{v}_{1}^{h} \in \mathbf{V}^{h}, p_{1}^{h} \in P^{h}, p_{2}^{h} \in P^{h},$$
что $\forall \mathbf{w}_{1}^{h} \in \mathbf{V}^{h}, q_{1}^{h} \in P^{h}, q_{2}^{h} \in P^{h}$

$$a_{i}(\mathbf{w}_{1}^{h}, \mathbf{v}_{1}^{h}) + b(\mathbf{w}_{1}^{h}, p_{1}^{h}) + \Lambda(\mathbf{w}_{1}^{h}, p_{2}^{h}) = (\mathbf{w}_{1}^{h}, \mathbf{F}), -b(\mathbf{v}_{1}^{h}, q_{1}^{h}) = 0,$$

$$a_{2}(p_{2}^{h}, q_{2}^{h}) + \Lambda(\mathbf{v}_{1}^{h}, q_{2}^{h}) = 0,$$

$$a_{2}(p_{2}^{h}, q_{2}^{h}) + \Lambda(\mathbf{v}_{1}^{h}, q_{2}^{h}) = 0,$$

$$a_{1}(\mathbf{w}_{1}^{h}, \mathbf{v}_{1}^{h}) := \int_{\Omega} \mu(\nabla \mathbf{v}_{1}^{h} + \nabla \mathbf{v}_{1}^{h}): \nabla \mathbf{w}_{2}^{h} d\Omega + \int_{\mathbb{F}_{2}^{h}} \frac{\mathbf{H}}{\mathbf{v}_{1}^{h}} \cdot \tau_{12})(\mathbf{w}_{1}^{h} \cdot \tau_{12}) dS - \int_{\mathbb{F}_{0}^{h}, \mathbf{s0}} (\mathbf{w}_{1}^{h}, q_{2}^{h}) = 0,$$

$$a_{2}(p_{2}^{h}, q_{2}^{h}) := \int_{\Omega} \mathbf{w}_{1}^{h} \nabla p_{2}^{h} \cdot \nabla \mathbf{w}_{2}^{h} d\Omega + \int_{\mathbb{F}_{12}^{h}} \frac{\mathbf{H}}{\mathbf{v}_{1}} \cdot \tau_{12})(\mathbf{w}_{1}^{h} \cdot \tau_{12}) dS - \int_{\mathbb{F}_{0}^{h}, \mathbf{s0}} (\mathbf{w}_{1}^{h}, q_{2}^{h}) = 0,$$

$$a_{2}(p_{2}^{h}, q_{2}^{h}) := \int_{\Omega} \mathbf{w}_{1}^{h} \nabla p_{2}^{h} \cdot \nabla q_{2}^{h} d\Omega + \int_{\mathbb{F}_{12}^{h}} \frac{\mathbf{H}}{\mathbf{v}_{1}} (\mathbf{v}_{1}^{h} \cdot \mathbf{v}_{12}) dS - \int_{\mathbb{F}_{0}^{h}, \mathbf{s0}} (\mathbf{w}_{1}^{h}, q_{2}^{h}) = 0,$$

$$a_{2}(p_{2}^{h}, q_{2}^{h}) := \int_{\Omega} \mathbf{w}_{1}^{h} \nabla p_{2}^{h} \cdot \nabla q_{2}^{h} d\Omega + \int_{\mathbb{F}_{12}^{h}} \frac{\mathbf{W}}{\mathbf{v}_{1}} \cdot \mathbf{v}_{1} dS - \int_{\mathbb{F}_{0}^{h}, \mathbf{s0}} dS - \int_{\mathbb{F}_{0}^{h}, \mathbf{s0}} (\mathbf{w}_{1}^{h} + \mathbf{v}_{2}^{h}) : [\mathbf{w}_{1}^{h}] + \lambda \left[\mathbf{w}_{1}^{h} \nabla q_{2}^{h} \right] : [\mathbf{p}_{2}^{h}] - \gamma_{2}^{OG} [\mathbf{p}_{2}^{h}] : [\mathbf{q}_{2}^{h}] dS$$

$$(\mathbf{w}^{h}, \mathbf{F}) := \int_{\Omega} \rho \mathbf{g} \cdot \mathbf{w}^{h} d\Omega + \int_{\mathbb{F}_{12}^{h}} \mathbf{W}^{h} dS - \lambda \int_{\partial\Omega} (\mathbf{w}^{h} + \nabla^{T} \mathbf{w}^{h}) : (\mathbf{u}_{g} \otimes \mathbf{n}) - \mathbf{t}^{DG} (\mathbf{u}_{g} \otimes \mathbf{n}) : (\mathbf{w}^{h} \otimes \mathbf{n}) dS$$

$$b(\mathbf{v}_{1}^{h}, q_{1}^{h}) := -\int_{\Omega} \nabla \mathbf{v}_{1}^{h} d\Omega + \int_{\mathbb{F}_{1}^{h}} \mathbf{H}^{h} dS - d(q_{2}^{h}, p^{h}) := \mathbf{t}^{DG} \int_{\mathbb{F}_{0}^{h}} (\mathbf{w}_{1}^{h}, p_{2}^{h}) := \int_{\mathbb{F}_{0}^{h}} p_{2}^{h} (\mathbf{w}_{1}^{h} \cdot \mathbf{n}_{1}) dS$$

$$(a_{1} \quad b \quad \Lambda) \\ -b^{T} \quad d \quad 0 \\ \Lambda \quad 0 \quad a_{2} \end{pmatrix} \nabla \mathbf{v}^{h} d\Omega + \int_{\mathbb{F}_{1}^{h}} \mathbf{H}^{h} dS$$

$$(a_{1} \quad b \quad \Lambda) \\ (b_{1} \quad b \quad \Lambda) \\ (b_{1} \quad b \quad \Lambda) \\ (b_{2} \quad b \quad \Lambda)$$

$$(b_{1} \quad b \quad \Lambda) \\ (b_{2} \quad b \quad \Lambda)$$

МЕТОДЫ ТЕОРИИ ОСРЕДНЕНИЯ

Методы теории осреднения континуальной модели Стокса

$$\frac{1}{\operatorname{mes}(\Omega_{i})} \int_{\Omega_{i}} \nabla \cdot \mathbf{v}_{i} d\Omega_{i} = \langle \nabla \cdot \mathbf{v}_{i} \rangle = \nabla \cdot \langle \mathbf{v}_{i} \rangle + \frac{1}{\operatorname{mes}(\Omega_{i})} \int_{\Gamma_{12}} \mathbf{n} \cdot \mathbf{v}_{i} dS = 0$$
$$-\nabla \langle p_{1} \rangle + \rho \mathbf{g} + \nabla \cdot \mu \left(\nabla \langle \mathbf{v}_{1} \rangle + \left(\nabla \langle \mathbf{v}_{1} \rangle \right)^{T} \right) + \frac{1}{\operatorname{mes}(\Omega_{1})} \int_{\Gamma_{12}} \mathbf{n} \cdot \left(-\mathbf{I} \hat{p}_{1} + \mu \left(\nabla \langle \hat{\mathbf{v}}_{1} \rangle + \left(\nabla \langle \hat{\mathbf{v}}_{1} \rangle \right)^{T} \right) \right) dS = 0$$

Эквивалентная задача

 $abla \cdot \mathbf{B} = \mathbf{0}$ $abla^2 \mathbf{B} - \nabla \mathbf{b} + \mathbf{I} = 0$ $\mathbf{B}|_{\Gamma_{12}} = \mathbf{0}$ $\mathbf{B}(\mathbf{r} + l_i) = \mathbf{B}(\mathbf{r})$ $\mathbf{b}(\mathbf{r} + l_i) = \mathbf{b}(\mathbf{r})$ $\mathbf{B} - \text{тензор возмущения скорости}$ $\mathbf{b} - \text{вектор возмущения давления}$ Тензор абсолютной проницаемости

$$\mathbf{k} = \frac{1}{\max(\Omega)} \int_{\Omega} \mathbf{B} d\Omega$$

Триклинная группа симметрии фильтрационных свойств $k_{ij} = k_1 a_i a_j + k_2 (a_i c_j + a_j c_i) + k_3 (a_i b_j + a_j b_i) + k_4 (b_i c_j + b_j c_i) + k_4 (b_i c_j + b_j c_j) + k_4 (b_i c_j + b_j c_j) + k_4 (b_i c_j + b_j c_j) + k_4 (b_i c_j + b_j c$

$$k_5 c_i c_j + k_6 b_i b_j$$

 a_i, b_i, c_i - компоненты ортов кристаллофизической системы координат

$$\mathbf{K} \cdot \mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{K} \cdot \mathbf{y} \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^3$$
$$\mathbf{K} \cdot \mathbf{x} \cdot \mathbf{x} > 0 \ \forall \mathbf{x} \in \mathbb{R}^3, \|\mathbf{x}\| = 1$$

ОБРАТНАЯ ЗАДАЧА

Постановка задачи

 $A\Theta = F$

- А: Х→Ү оператор ОКЗ
- $\Theta = \left\{ k_{xx}, k_{xy}, k_{xz}, k_{yy}, k_{yz}, k_{zz} \right\}$ $\mathbf{F} = \mathbf{F}^* + \boldsymbol{\xi}$ – модель наблюдения

Функционал А. Н. Тихонова:

$$J_{\alpha}(\boldsymbol{\Theta}) = \left\| \mathbf{A}\boldsymbol{\Theta} - \mathbf{F} \right\|^{2} + \alpha \left\| \boldsymbol{\Theta} \right\|^{2}$$

Как полунорму сделать нормой?

$$J_{\alpha}\left(\boldsymbol{\Theta}\right) = \left\|\mathbf{A}\boldsymbol{\Theta} - \mathbf{F}\right\|_{\vartheta}^{2} + \alpha \left\|\boldsymbol{\Theta}\right\|_{\vartheta}^{2}$$

 α – параметр регуляризирующей добавки (по методу квазиоптимального значения), АΘ – скорость течения в неоднородной среде, F – скорость фильтрации в однородной среде

Какие сложности ещё?

Существование обратного оператора обратной задачи:

- Влияние возмущения оцениваемых параметров на градиент минимизируемого функционала
 - Решение: SVD-анализ производной
 Фреше оператора прямой задачи
- Влияние зашумления на точность решения обратной задачи
 - Решение: исследование функции чувствительности

Результат: зашумление модели наблюдения не более 10%, возмущение оцениваемых параметров не более 15%

Тихонов А.Н., Арсенин В.Я. *Методы решения некорректных задач*. 2-е изд. – М.: Наука: Главная редакция физико-математической литературы, 1979. – 285 с.

МОДЕЛЬ НАБЛЮДЕНИЯ

Выпиливаются шесть подобластей: два взаимоперпендикулярно в плоскости напластования и одно перпендикулярно плоскости напластования; три других в перпендикулярных плоскостях, образованных тремя первыми направлениями под углом 45° между каждой парой

Затем решаются шесть прямых задач вида:

$$\nabla p = \nabla \cdot \mu \left(\nabla \mathbf{v} + (\nabla \mathbf{v})^T \right) + \rho \mathbf{g}$$
$$\nabla \cdot \mathbf{v} = 0$$
$$\left(-p \mathbf{I} + \mu \left(\nabla \mathbf{v} + \nabla^T \mathbf{v} \right) \right) \cdot \mathbf{n} \Big|_{\Gamma_{in}} = p_{in} \mathbf{n}$$
$$\left(-p \mathbf{I} + \mu \left(\nabla \mathbf{v} + \nabla^T \mathbf{v} \right) \right) \cdot \mathbf{n} \Big|_{\Gamma_{out}} = p_{out} \mathbf{n}$$
$$\mathbf{v} \Big|_{\Gamma_{wall}} = 0$$

В случае триклинной группы симметрии фильтрационных свойств задача о вычислении тензора коэффициентов абсолютной проницаемости не всегда может быть решена

ПРИМЕР ВЛИЯНИЯ НЕКОРРЕКТНОЙ АППРОКСИМАЦИИ

SVD матрицы производной Фреше оператора прямой задачи (классический МКЭ)

ПРИМЕР ВЛИЯНИЯ НЕКОРРЕКТНОЙ АППРОКСИМАЦИИ

SVD матрицы производной Фреше оператора прямой задачи (разрывный метод Галёркина)

ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ

Последовательность изображений для образца имеет разрешение 400 × 400 пикселей и содержит 400 сканов

Пространственное разрешение 5.345 мкм

Пористость 19.6%

Синим цветом показано связное поровое пространство, более светлым – изолированные поры и трещины. Исходная геометрическая модель была аппроксимирована симплициальной сеткой, которая состоит из 10396243 тетраэдров

k _{xx} = (1300±109) мД, <i>P</i> = 0.95		(1258	0.15	0.01
k _{yy} = (1200±104) мД, <i>P</i> = 0.95	k =	0.15	1199	0.03
k _{zz} = (1090±95) мД, <i>P</i> = 0.95		0.01	0.03	1086

¹ режим доступа: https://www.imperial.ac.uk/earth-science/research/research-groups/pore-scale-modelling/micro-ctimages-and-networks/berea-sandstone/

ОСНОВНЫЕ ВЫВОДЫ

- 1. Процедура определения физических свойств гетерогенных сред требует применения современных вычислительных алгоритмов, адаптированных под естественную многомасштабность и высокую контрастность физических свойств исследуемых объектов
- 2. Процедура математического моделирования и физический эксперимент должны быть строго согласованы и реализуемы
- 3. Постановка обратной коэффициентной задачи и алгоритм её решения должны быть связаны с выбором феноменологической модели наблюдаемых данных и методом дискретизации

ДАЛЬНЕЙШЕЕ РАЗВИТИЕ

- 1. Проблема выбора репрезентативного объёма в контексте анизотропных физических свойств
- 2. Достаточная информативность наблюдаемых данных
- 3. Разработка и реализация стратегии многомасштабного математического моделирования многофизичных процессов
- 4. Разработка новой измерительной аппаратуры для определения анизотропных физических свойств