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In this article, regularizations and stability of solutions of system linear integral Fredholm
equations of the first kind are obtained by the methods of functional analysis.
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1. Introduction

Inverse and ill-posed problems are currently attracting great interest. The
theory and numerical methods for solving inverse and ill-posed problems were
studied in [1-18].The notion of correctness in the works of A.N. Tikhonov [1],
M.M. Lavrent’ev [2] and V.K. Ivanov [3], different from the classical one,
provided a means for studying ill-posed problems and stimulated interest in
integral equations with large applied value.

The fundamental results for Fredholm integral equations of the first kind
were obtained by M.M. Lavrentiev in [4], [5], where the regularizing operators in

the sense of M.M. Lavrentiev.



In [10]-[12], uniqueness theorems were proved and regularization

operators in the sense of Lavrent’ev were constructed for systems of linear

Volterra and Fredholm integral equations of the third kind.

In [14]-[16] problems of uniqueness and stability of solutions for linear

Fredholm integral equations of the first kind were investigated.

In this work, we apply the method of integral transformation to prove

regularizations and stability of solutions of system of linear integral Fredholm

equations of the first kind in the semi-axis.

Consider of the system of Fredholm linear integral equations
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- unknown vector function.
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System of equations (1) by virtue of relation (2) can be expressed as

J:A(t,s)u (S)ds +jB(t,s)u (s)ds = f(t)
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Both parts of (3) are scalarly multiplied by the u(t)-vector function and ),

integrating the results on@ <7 <*® we obtain
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where B*(s, t) is the transposed matrix to the matrix B(s, t).

Integrating by parts and using the Dirichlet formula we have
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Then from (5) we obtain
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We introduce a new matrix function M(t, S) as follows



H(t,s), —o<s=<st=a,

M(t,s)={

H(S,t), —co<ft=ss=a.
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It is casy to verify the validity of the equality
}}\M (t,5) dsdt < +.
Then, it is known that
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where, A the characteristic numbers of the matrix kernel (t’s), which are

and P (t), b, (f)

arranged in ascending order of their modules,

7»1‘ < ‘7»2‘ <..

the corresponding orthonormal eigen vector-functions.
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It is assumed that M(t’s)is a complete kernel and .. In this case,

the solution of equation (1) will be unique in L, (_Oo’a]

In what follows, we will assume that all characteristic numbers of the matrix

kernel are positive.
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We will assume that ) Then the system (1) has a solution

(u (t))EN and by virtue of (6), (7) and (8) we have:
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Hence, using Holder's inequalities, we have
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Here we have applied Holder's inequality for o . Taking into

account u( )E N and (11), from the last inequality we have
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Hence we obtain the following stability estimate
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Thus, the following theorem has been proved.

Theorem 1. Let the operator M generated by the matrix kernelM(t’S) be

K(N,)

positive, where it is deﬁnedM(t’S) by formula (7). Then on the set

(K(N“ )image when N displayed by the operator K ) the operator K -1, the
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inverse of K, is uniformly continuous with the Holder exponent2+¢ | i.e.

estimate (12) is valid.
Let us show that the solution of the system of equations

cute )+ [K(nsp(s.e)ds= /(). 1€(=.ale>0 "

will be regularizing for equation (1) on the set N :
Indeed, by making the following substitution into the in system

equations (13)
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where ( ¢ - solution of systems of equations (1), we obtain
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Scalarly multiplying the last system of equations by E(te) and integrating

from -oo to a, taking into account (2) and (8), we have:
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where g ( )—are the Fourier coefficients for the function E(e) , according to the
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orthonormal system o) = {pi ) }that is
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Therefore, after applying the generalized Holder inequality to the right-hand
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Further in force

”(t )E Nos (15) and (16) from the last inequality we have

(o]

Sl
v=1

p+q
pq

E, (8 ){ < (ec)\.f‘ );c‘lf (c?»lo‘ )

_ 2(1+OL)’ g = 2(1+0L)
Hence, substituting o , we get

_b 1 I
§v (8 ) < C2(1+a)(C7\.?)2 (8C7\.(11)2(1+a),

2 ‘MM (17)

2
. 1 1 o o a a

E ‘u(v) EV (8 1 < 07»12(1”)CECZ(HO‘)?\.FXIHHG)8 2(1+a)
=1

v

a(2a+1) a

I £ (e)= }\12(1+0L)82(1+a)
Z‘” ()( ’ . (18)

Taking into account (18), from (14) we have
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Thus proven.
: M (t,s)
Theorem 2. Let the operator M generated by the matrix kernel be
positive and / (t )E K(Na ) Then estimate (19) is valid, where u(t,¢ )-is the

solution of the system (13), u(t) is the solution of the system (1) M (t’S) and is
determined by formula (8).
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