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Main equations of poroelasticity

1. Governing Equations

divσ = 0, σ = λ div u I +2µ E(u)− αp I (1)

2. Relation between pore pressure, deformation of the skeleton

and �uid compressibility

p = M(−αε+ ρf φ) (2)

3. Filtration of �uid

∂p

∂t
= M div

(k
η
∇p − α∂u

∂t

)
(3)

Here σ � Cauchy stress tensor, u � the displacement vector of the

skeleton, E(u) � stress-strain tensor, ε = tr E � volume

deformation, α = 1− K/Ks � Biot coe�cient, λ è µ � elasticity

modulus, M � Biot modulus, φ � porosity, k � permeability, η �

�uid viscosity.
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Drained and undrained experiments

Drained experiment

dp = 0 or t →∞
at constant porous

pressure

dσ = Kdε,

d(ρf φ) = αdε.

Undrained experiment

d(ρf φ) = 0 or t = 0+

no movement of the �uid

dσ = Kudε,

dp = αMdε.

Ku = K + α2M � undrained

bulk modulus: Ku > K .

dp = −Bdσ

Here B =
αM

Ku
is Skempton

coe�cient, 0 < B < 1.

Conclusion: porous �uid increases e�ective elasticity of the material!
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The problem of the stimulation of the hydraulic fracturing.

Hydraulic fracture opens under the pressure of the pumped �uid.

One of problems is �nding the opening of the fracture w as a

function of �uid pressure p.

w = F [p;λ,u, α,M, σ0, . . .]

at given poroelastic reservoir characteristics and compressive rock

pressure σ0.
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In�uence of the backstress on the opening of the fracture

Backstress is the additional compressive stress, which appear due to

the �ltration of the �uid into the reservoir

Backstress

poroelastic
solution

elastic
solution

Backstress in the fracture (left) and opening of the fracture at

di�erent α (right)

In�uence of the poroelastic e�ects decreases the e�ective length of

the fracture:

Generation of the backstress ⇒ Increase of pressure in the fracture ⇒

Increase of the leako� ⇒ Decrease of fracture length
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Formal de�nition of the backstress

We will distinguish explicitly the contribution of the pore pressure

to stresses in the medium:

u = u
r + u

p, σ = σp + σr − αpI .

Equilibrium equation are divided into 2 subproblems:

divσp = α∇p,
Γf : u = 0

divσr = 0,

Γf : σr 〈n〉 = (σ0 − p)n+
αp n− σp〈n〉.

Backstress b =
(
αp n− σp〈n〉

)∣∣
Γf
.

Taking into account the backstress allows to solve the problem of

crack opening in the framework of the usual elasticity model for σr

with additional stress b over the fracture's wall.
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De�ning of the Backstress in Exact Solutions

Compression of the �at poroelastic layer under the �uid pressure

z = L : w = 0,
∂p

∂z
= 0,

z = 0 : σ〈n〉 = −P0n,

t = 0 : w = 0, p = 0.

0 < L <∞

Compression of the cylindrical poroelastic layer

r = Rin :
σrr = −P0 + S0 cos 2θ,
σrθ = −P0+S0 sin 2θ, p = −P0

r = Rout : w = 0.
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Compression of the �at layer

Equilibrium conditions for tensor σp:

(λ+ 2µ)
∂2wp

∂z2
= α

∂p

∂z
, wp|z=0 = wp|z=L = 0.

Consequently,

n · σp〈n〉|z=L = (λ+ 2µ)
∂wp

∂z
|z=L = αp0(t)− α

L

∫ L

0

p(t, s)ds.

According to the de�nition we will �nd backstress in the form:

b = (αpn− n · σp〈n〉)|z=L =
α

L

∫ L

0

p(t, s)ds n.

Backstress is proportional to the average porous pressure over the

layer!
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Evolution of porous pressure

Exact solution for pressure:

p = p0

(
1−

∞∑
n=0

4

π(2n + 1)
sin

(
π(2n + 1)

2L
z

)
exp

(
−π

2(2n + 1)2

4L2
cf t

))
.

Here

cf =
k

η
M

K + 4
3
µ

Ku + 4
3
µ

� coe�cient of the �ltration of the porous media

The position of �ltration front: z�ltr ∼
√
cf t.

The leako� velocity: vl ∼ 1/
√
cf t
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Cylindrical layer: the axisymmetric case

We will suppose S0 = 0.

Radial displacement

ur =
α(1− 2ν)

2G (1− ν)

1

r

∫ r

Rin

(sp(s, t)ds) +

A1(t)r +
A2(t)

r
.

Coe�cients A1 and A2 are determined by the

boundary conditions.
The value of the backstress is the same on both the external and

the internal cylinder and is proportional to the average pressure.

b =
2α
∫ Rout

Rin
s p(s, t)ds

R2
out − R2

in

er

Backstress for the symmetrical compression is equal to zero for the

cases of an in�nite �at and cylindrical layers!
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Cylindrical layer: non-axisymmetric case

We will consider that p0 = 0, S0 6= 0.

br = 2α(−1 + 2ν)
(

cos 2θ
mλ2 + m + 2λ4(6− 4ν)

m2λ6 + 3λ2 −m2

∫ 1

λ

P

s̃
ds̃

+
3 + 3λ2m

λ6m2 − 3λ4 + 3λ2 −m2

∫ 1

λ
Ps̃3ds̃

)
,

(4)

bθ = 2α(−1 + 2ν) sin 2θ
( 4νλ4 − λ2m −m

3λ2 − 3λ4 + m2λ6 −m2

∫ 1

λ

P

s̃
ds̃

− 3 + 3λ2m

λ6m2 − 3λ4 + 3λ2 −m2

∫ 1

λ
Ps̃3ds̃

)
. (5)

Here λ = Rin
Rout

, m = 3− 4ν.
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Cylindrical layer: the non-axisymmetric case

For the in�nite layer Rout =∞,

br = −2α(2ν − 1) cos 2θ

3− 4ν

∫ ∞

Rin

P

s
ds,

bθ =
2α(2ν − 1) sin 2θ

3− 4ν

∫ ∞

Rin

P

s
ds

Backstresses

I exist in the in�nite layer for the inhomogeneous porous

pressure;

I have both normal and tangential components;

I determined by the Poisson coe�cient and does not depend on

the Young's modulus
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Conclusions

I The formal de�nition of the backstresses, which appear due to

the action of the porous pressure over the boundaries of the

domain, is given;

I The exact formulas for the backstress in the problems of the

compression of �at and cylindrical layers are found;

I The analysis of the observed formulas revealed
I For the homogeneous distribution of the pressure, the

backstress is proportional to the average stress at a layer and is

equal to zero for the in�nite layer;
I Under the inhomogeneous porous pressure, the backstress has

both normal and tangential components, depends on the

Poisson coe�cient and is proportional to the integral from the

porous pressure.

I The leako� velocity and the backstress are strongly in�uenced

by the poroelastic �ltration coe�cient.
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