

Сибирский государственный университет науки и технологий имени М.Ф. Решетнева

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ РАСПРОСТРАНЕНИЯ ГАЗОВЫХ ВЫБРОСОВ ПРИ ТЕХНОГЕННЫХ КАТАСТРОФАХ

Доцент, к.т.н. Владимир Сергеевич Фаворский

Бердск 2023

Распространение загрязнения при выбросе

Процент объемной концентрации газа через 35 секунд от начала рассеивания при скорости 5м/с и устойчивом состоянии атмосферы [1].

Натурный эксперимент при обтекании строения после выброса газа

Натурный эксперимент на острове Тони по исследованию распределения концентрации при обтекании строения после выброса газа из верхнего люка цилиндрического хранилища [1].

Изменение концентрации и размеров облака вредного выброса

Зависимость концентрации кг/м3 и размеров облака вредного выброса от расстояния до места аварии в различные моменты времени [2].

Исходные данные для прогнозирования масштабов заражения

В качестве исходных данных для прогнозирования масштабов заражения АХОВ используются следующие параметры:

- общее количество АХОВ на объекте. Данные по размещению их запасов в емкостях и технологических трубопроводах;

- количество АХОВ, выброшенных в атмосферу, и характер их разлива на подстилающей поверхности («свободно», «в поддон», или «обваловку»);

- высота поддонов или обваловки складских емкостей;

- метеорологические условия: температура воздуха, скорость ветра на высоте 10 м, степень вертикальной устойчивости воздуха.

Состояния турбулентности атмосферы

Степень вертикальной устойчивости воздуха в зависимости от метеорологических условий

	Ночь		Утро		День		Вечер	
Скорость ветра, м/с	Ясно, переменная облачность	Сплошная облачность	Ясно, переменная облачность	Сплошная облачность	Ясно, переменная облачность	Сплошная облачность	Ясно, переменная облачность	Сплошная облачность
< 2	ИН	ИЗ	ИЗ	ИЗ	К	ИЗ	ИН	ИЗ
24	ИН	ИЗ	ИЗ	ИЗ	ИЗ	ИЗ	ИЗ	ИЗ
>4	ИН	ИЗ	ИЗ	ИЗ	ИЗ	ИЗ	ИЗ	ИЗ

Примечание: ИН – инверсия; ИЗ – изотермия; К – конвекция

Структура слоев атмосферы

По характеру движения воздушных масс атмосферу делят на слои:

1) приземный слой (высота 50-100 м, турбулентность ограничивается процессами

трения о поверхность Земли, зависит от ее состава, рельефа и застройки);

2) пограничный слой высотой до 1000-1500 м;

3) свободная атмосфера.

Наибольший вертикальный градиент скорости ветра наблюдается в нижнем 200метровом слое (1-1,5 м/с на каждые 100 м высоты).

Факторы, влияющие на формирование турбулентности в атмосфере

Самопроизвольное развитие турбулентности в атмосфере связано с гравитационной устойчивостью атмосферы. Процессы стратификации атмосферы характеризуются величиной критерия Ричардсона.

Тепловая турбулентность связана с наличием флуктуаций тепловых потоков. Облачный покров уменьшает или увеличивает потери тепла, способствуя стабилизации приземного слоя атмосферы.

Сильные ветры также способствуют нейтральной устойчивости.

Ночью при ясном небе и слабом ветре атмосфера становится устойчивой, в то время как в дневное время параметры атмосферы становятся нестабильными.

Экспериментальная установка

Аэродинамический комплекс УЛАК-1:

1 – направляющие лопатки; 2 – хонейкомб; 3, 7 – сетки; 4 – сопло; 5 – координатное устройство; 6 – диффузор; 8 – электродвигатель; 9 – вентиляторная установка; 10 – α-, β-механизм для изменения угла атаки и угла скольжения; 11 – воздушный канал

Характеристики экспериментальной установки

Для проведения экспериментальных исследований используется аэродинамический комплекс УЛАК-1:

- Скорость потока до 60 м/;
- Размеры рабочей части аэродинамической трубы 400х600х800 мм;
- Диапазон изменения угла атаки от -10 до +18 градусов;
- Диапазон изменения угла скольжения от -10 до +10 градусов;
- Точность измерения скоса потока пятиствольным приемником ЦАГИ +/- 0,5 градуса.

Постановка задачи

Эффекты сопротивления турбулентному потоку, создаваемого препятствиями, обычно учитываются различными через длину шероховатости. Такое моделирование эффективна для многих приложений, но имеет свои ограничения. Во-первых, этот метод не дает информации о характеристиках потока между отдельными элементами застройки. Вовторых, этот параметр определяется только в случае логарифмического профиля ветра над застройкой, а в других условиях определить размер параметра шероховатости однозначно довольно сложно. Поэтому для характеристики сильно неоднородной территории, какой является городская застройка, используется параметр сопротивления среды «городской застройки»

$$K_f = \sqrt{\left[C_{ds} + 0.5 C_{dh} (1 - \eta) P_B \sum_{a}^{b} \frac{h}{b} \right]}$$

Суммирование в формуле выполняется для всех строений на окружающей каньон территории. *С_{ds}=0.6* и *С_{dh}=0.003* определены с помощью экспериментов в аэродинамической трубе.

Методика оценки проницаемости городской застройки

Методика оценки проницаемости городской застройки при распространении облака загрязнения АХОВ позволяет прогнозировать масштабы зон поражения при авариях на технологических емкостях и хранилищах, при транспортировке железнодорожным, трубопроводным и другими видами транспорта, а также в случае разрушения химически опасных объектов.

Методика распространяется на случаи выброса АХОВ в атмосферу в газо-, парообразном и аэрозольном состоянии. При этом масштабы заражения АХОВ в зависимости от их физических свойств и агрегатного состояния рассчитывают по первичному и вторичному облаку, например для сжиженных газов – отдельно по первичному и вторичному облаку; для сжатых газов – только по первичному облаку, для ядовитых жидкостей, кипящих при температуре окружающей среды и только по вторичному облаку [3].

Заключение

- С помощью экспериментов в аэродинамической трубе планируется уточнить экспериментальные значения *C*_{ds}=0.6 и *C*_{dh}=0.003.
- Применение методики оценки коэффициента продуваемости городской застройки позволяет повысить точность оценки уровня загрязнения при техногенных выбросах.

Библиографические ссылки

[1] Davies M.E. Singh S. The Phase II Trail: A data set the effect of obstructions // Journal of Hazardous Materials, V. 11, 1985, P. 301-323.

[2] Ортина М.Н., Купцов А.И., Гимранов Ф.М. Математическое моделирование рассеивания облаков тяжелых газов в условиях промышленной застройки: влияние метеоусловий // Вестник технологического университета, 2017. № 10. С. 115-118.

[3] Захаров Ю.В., Михайлюта С.В. Суховольский В.Г., Тасейко О.В. Техногенное загрязнение атмосферы, моделирование и идентификация источников // Труды VII Всероссийской научной конференции с участием иностранных ученых. Современные методы математического моделирования природных и антропогенных катастроф. Красноярск, 13-17 окт. 2003 г. - Красноярск: ИВМ СО РАН, 2003. - С.124-125.

[4] ГОСТ Р 22.0.05-94 Безопасность в чрезвычайных ситуациях. Техногенные чрезвычайные ситуации.

[5] ГОСТ 12.1.007-76. Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности.

[6] А. И. Купцов, Д. Я. Исламхузин, Ф. М. Гимранов Экспериментальная установка для имитации процессов распространения облаков газов // Вестник Казанского технологического университета. – 2012. – №11. — С. 166-168.

[7] Ф.Т.М. Ньюстадт, Х. Ван Доп, Атмосферная турбулентность и моделирование распространения примесей. Гидрометеоиздат, Л. 1985. 350с.

[8] Raupach, M.R. Simplified expressions for vegetation roughness length and zeroplan displacement height as functions of canopy height and area index // Boundary-Layer Meteorology. 1994. - № 71. - P. 211 - 216.

Библиографические ссылки (продолжение)

8. Ledig C., Theis L., Huszar F., Caballero J., Aitken A., Tejani A., Totz J., Wang Z., Shi W. Photo-realistic single image super-resolution using a generative adversarial network // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. IEEE: Honolulu, HI, USA. P. 105-114.

9. *Hou B., Liu Q., Wang H., Wang Y.* From W-Net to CDGAN: Bi-temporal change detection via deep learning techniques // IEEE Transactions on Geoscience and Remote Sensing. 2020. V. 58. N. 3. P. 1790-1802.

10. Salgueiro L., Marcello J., Vilaplana V. SEG-ESRGAN: A multi-task network for super-resolution and semantic segmentation of remote sensing images // Remote Sensing. 2022. V. 14. N. 22. P. 5862.1-5862.28.

11. *Zhang Y., Yu X., Lu X., Liu P.* Pro-UIGAN: Progressive face hallucination from occluded thumbnails // IEEE Transactions on Image Processing. 2022. V.31. P. 3236-3250.

12. *Muzahid A.A.M., Wanggen W., Sohel F., Bennamoun M., Hou L., Ullah H.* Progressive conditional GAN-based augmentation for 3D object recognition // Neurocomputing. 2021. V. 460. P. 20-30.

13. *Zhou, Q., Yin, H.* A U-Net based progressive GAN for microscopic image augmentation // In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, CB. (eds) Medical Image Understanding and Analysis. 2022. Springer: Cham. LNCS, V. 13413. P. 458-468.

14. *Wang X., Yu K., Wu S., Gu J., Liu Y., Dong C., Qiao Y., Loy C.C.* ESRGAN: Enhanced super-resolution generative adversarial networks // In: Leal-Taixé, L., Roth, S. (eds) Computer Vision – ECCV 2018 Workshops. 2019. Springer, Cham. LNCS, V. 11133. P. 63-79.

Библиографические ссылки (продолжение)

[9] Воронцов П.А. Турбулентность и вертикальные токи в пограничном слое атмосферы / П.А. Воронцов. Л.: Гидрометеоиздат, 1966. - 296 с.

[10] Анализ процессов и явлений при распространении газовых выбросов в атмосфере

[11] Афанасьев Ю. А. Мониторинг и методы контроля окружающей среды: учеб, пособие: в 2 ч. /Ю. А. Афанасьев [и др.]. М.: Изд-во МНЭПУ, 1998.

[12] Фаворский В.С. Исследование аэродинамических характеристик модели перспективного самолета на УЛАК-1 // Тезисы Решетневских чтений, СибГУ, 2022, с.36-37.

[13] Газоанализатор взрывоопасных газов и паров многоканальный Сигма-1М. руководство по эксплуатации. ООО «Политехформ-М», Москва 2010. 35с.

Спасибо за внимание Ваши вопросы