Исследование линейной устойчивости кольцевого режима двухфазного течения*

Д.Г. АРХИПОВ e-mail: theory@itp.nsc.ru

И.С. ВОЖАКОВ e-mail: vozhakov@gmail.com

О.Ю. ЦВЕЛОДУБ e-mail: tsvel@itp.nsc.ru Новосибирский государственный университет Институт теплофизики им. С.С. Кутателадзе СО РАН

Выведена новая система уравнений для моделирования динамики длинноволновых возмущений на поверхности тонкого слоя вязкой жидкости, стекающего по вертикальной плоскости и обдуваемого турбулентным потоком газа. Проведен анализ линейной устойчивости плоскопараллельного течения. Обнаружено, что при умеренных числах Рейнольдса жидкости линейные модели Бенджамина и переноса граничных условий на невозмущенный уровень для возмущенного течения газа дают качественно похожие результаты. При уменьшении числа Рейнольдса, отличия между результатами, полученными по разным моделями турбулентности, становятся более выраженными.

1. Введение и постановка задачи

Совместное течение жидкости и газа - классическая задача гидродинамики. Применительно к задачам теплофизики и химической технологии часто имеет место турбулентное течение газа над тонким, покрытым волнами слоем жидкости. Решение этой проблемы в полной сопряженной постановке связано со значительными вычислительными трудностями, поэтому зачастую выделяют два этапа моделирования: определение напряжений газа на поверхности пленки и последующий расчет эволюции волн в жидкости. Скорость жидкости значительно меньше характерной скорости газа, поэтому поверхность раздела полагают жесткой и неподвижной. Кроме того, вследствие малости толщины пленки, влияние возмущений границы раздела на скорости в газе, можно считать линейным. В силу этого, задача вычисления нормальных и касательных напряжений газа на поверхности сводится к рассмотрению влияния на них отдельных пространственных гармоник. На втором этапе исследования совместного течения исследуется динамика нелинейных волн на поверхности пленки жидкости в известном поле напряжений на границе раздела фаз.

Полная постановка задачи включает уравнения Навье–Стокса с соответствующими кинематическими и динамическими граничными условиями. В ней серьезной проблемой

^{*}Работа выполнена при финансовой поддержке гранта Правительства России для государственной поддержки научных исследований проводимых под руководством ведущих ученых в российских вузах № 11.G34.31.0035 (ведущий ученый – В. Е. Захаров, ГОУ ВПО «Новосибирский государственный университет»)

является то, что положение подвижной границы заранее неизвестно и определяется в процессе решения. Целью работы было получение модельной системы уравнений, описывающей эволюцию длинноволновых возмущений границы раздела при умеренных числах Рейнольдса жидкости, в которой проблема неизвестной границы в некотором смысле решена.

Если исключить из рассмотрения эффекты уноса капель и осушения стенки, то область течения жидкости является односвязной. Наличие поверхностного натяжения обеспечивает отсутствие острых кромок на поверхности пленки. В этих условиях функция y = h(x,t), определяющая положение точек границы области является однозначной, и существует непрерывно дифференцируемое преобразование координат, отображающее область течения жидкости в полосу постоянной толщины:

$$x = x, \qquad \eta = y/h(x,t), \qquad t = t.$$
 (1)

Новые переменные (1) не ортогональны, поэтому обычная формулировка уравнений движения в векторной форме неприменима. По этой причине часто ограничиваются простой заменой переменных в исходных уравнениях без преобразования векторов и тензоров (см., например, [1]). В результате получаются системы уравнений для декартовых компонент скорости жидкости. Эти компоненты, разумеется, не образуют вектор в новой криволинейной системе координат (1).

Другой способ выполнить преобразование (1) предполагает использование новых переменных в уравнениях, записанных в тензорной, инвариантной относительно систем координат, форме. Однако для этого необходима система уравнений движения жидкости в полном четырехмерном пространстве, где одной из координат является время. В физике такая система известна, как система уравнений релятивистской гидродинамики [2]. Тензорные обозначения позволяют переходить в произвольную подвижную систему координат, а применение ключевой идеи общей теории относительности – гравитация не меняет уравнений движения, а влияет только на метрику пространства – элегантно решает проблему внешней силы тяжести. Записав уравнения в новых криволинейных координатах покомпонентно, и ограничиваясь первым членом разложения по малому параметру (отношение скорости жидкости к скорости света), в длинноволновом пределе приходим к системе [3]:

$$\frac{\partial(uh)}{\partial t} + \frac{\partial(u^2h)}{\partial x} + \frac{\partial(uvh)}{\partial \eta} = -\frac{h}{\rho}\frac{\partial p}{\partial x} + \frac{\mu}{\rho h}\frac{\partial^2 u}{\partial \eta^2} + gh$$
(2)

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} + \frac{\partial (vh)}{\partial \eta} = 0 \tag{3}$$

$$\frac{\partial p}{\partial \eta} = 0 \tag{4}$$

Здесь h – толщина пленки, p – давление, u и v – контрвариантные компоненты продольной и поперечной скорости, соответственно, ρ – плотность, μ – динамическая вязкость жидкости.

Из граничного условия покоя жидкости на гиперповерхности $\eta = 0$ следует:

$$u(x,0,t) = 0, \qquad v(x,0,t) = 0$$
 (5)

На гиперповерхности $\eta = 1$ выполняется условие непротекания:

$$v \equiv \frac{d\eta}{dt} = 0, \qquad v(x, 1, t) = 0 \tag{6}$$

Введем на $\eta = 1$ локальные координаты ζ^i по правилу:

$$x = \zeta^1, \qquad \eta = 1, \qquad t = \zeta^2 \tag{7}$$

Тогда ковариантный вектор нормали записывается обычным способом:

$$n_i \equiv \frac{1}{2} e^{\alpha\beta} e_{ijk} \frac{\partial x^j}{\partial \zeta^{\alpha}} \frac{\partial x^k}{\partial \zeta^{\beta}} = (0, h, 0)$$
(8)

Проектируя тензор вязких напряжений на вектор нормали, в длинноволновом приближении получаем:

$$\tau^{1j}n_j(x,1,t) \equiv \frac{\mu}{h}\frac{\partial u}{\partial \eta}(x,1,t) = \mathcal{T}_g(x,t) \equiv \mathcal{T}_0\left(1 + \int_{-\infty}^{+\infty} \tau(k)k\hat{h}(k,t)e^{ikx}dk\right)$$
(9)
$$\tau^{3j}n_j(x,1,t) = 0$$

Учитывая наличие скачка нормального напряжения на поверхности, в этом же приближении имеем:

$$p = \mathcal{P}_g(x,t) - 2\sigma H \equiv \mathcal{P}_0(x) + \int_{-\infty}^{+\infty} p(k)k\hat{h}(k,t)e^{ikx}dk - 2\sigma H$$
(10)

Здесь $\mathcal{T}_g(x,t)$ – распределение касательных напряжений газа на поверхности пленки, \mathcal{T}_0 – его невозмущенная составляющая, $\mathcal{P}_g(x,t)$ – распределение давления, $\mathcal{P}_0(x)$ – давление газа в отсутствие возмущений поверхности пленки жидкости, $\tau(k)$ – Фурьекомпонента составляющей, вызванной криволинейностью границы раздела, $\hat{h}(k,t)$ – Фурье-разложение формы поверхности:

$$\hat{h}(k,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} h(x,t) e^{-ikx} dk,$$
(11)

H – средняя кривизна поверхности, определяемая как свертка первой a_{ij} и второй b_{ij} квадратичных форм свободной поверхности $H = a^{ij}b_{ij}$, σ – коэффициент поверхностного натяжения.

Так как средняя кривизна является скаляром, вычислим ее в декартовых координатах:

$$H = \frac{1}{2} \frac{\partial^2 h}{\partial x^2} \tag{12}$$

Используя уравнения (10),(12) приводим систему (2)-(4) к виду:

$$\frac{\partial(uh)}{\partial t} + \frac{\partial(u^2h)}{\partial x} + \frac{\partial(uvh)}{\partial \eta} = \frac{\sigma}{\rho}h\frac{\partial^3 h}{\partial x^3} + \frac{\mu}{\rho h}\frac{\partial^2 u}{\partial \eta^2} + gh - \frac{\chi}{\rho}h - \frac{h}{\rho}\int_{-\infty}^{+\infty} ik^2 p(k)\hat{h}(k,t)e^{ikx}dk$$
$$\frac{\partial h}{\partial t} + \frac{\partial(uh)}{\partial x} + \frac{\partial(hv)}{\partial \eta} = 0$$
(13)

Здесь $\chi \equiv d\mathcal{P}_0/dx$.

2. Исследование линейной устойчивости

Выберем характерные масштабы скорости – u_0 , длины – l_0 , толщины – h_0 , времени – l_0/u_0 , и напряжений $\mathcal{P}_g, \mathcal{T}_g - \rho u_0^2$, и перепишем систему уравнений (13) в безразмерных переменных (с верхней $\tilde{}$):

$$\tilde{u} = \frac{u}{u_0}, \qquad \tilde{v} = \frac{l_0 v}{u_0}, \qquad \tilde{x} = \frac{x}{l_0}, \qquad \tilde{t} = \frac{u_0 t}{l_0}, \qquad \tilde{h} = \frac{h}{h_0}$$

$$\tilde{\tilde{h}}_k = \frac{\hat{h}(k,t)}{h_0 l_0}, \qquad \tilde{k} = k l_0, \qquad \tilde{\tau}_0 = \frac{\mathcal{T}_0}{\rho u_0^2}$$

$$\frac{u_0^2 h_0}{l_0} \frac{\partial (\tilde{u}\tilde{h})}{\partial \tilde{t}} + \frac{u_0^2 h_0}{l_0} \frac{\partial (\tilde{u}^2 \tilde{h})}{\partial \tilde{x}} + \frac{u_0^2 h_0}{l_0} \frac{\partial (\tilde{u}\tilde{v}\tilde{h})}{\partial \eta} = \frac{h_0^2}{l_0^3} \frac{\sigma}{\rho} \tilde{h} \frac{\partial^3 \tilde{h}}{\partial \tilde{x}^3} - \frac{h_0 \rho u_0^2}{l_0} \frac{\tilde{h}}{\rho} \frac{\partial \tilde{p}_0}{\partial \tilde{x}} - \frac{\rho u_0^2 h_0^2}{l_0^2} \frac{\tilde{h}}{\rho} \int \hat{h}_k i \tilde{k}^2 \tilde{p}(\tilde{k}) e^{i \tilde{k}\tilde{x}} d\tilde{k} + \frac{u_0}{h_0} \frac{\mu}{\rho \tilde{h}} \frac{\partial^2 \tilde{u}}{\partial \eta^2} + g h_0 \tilde{h} \qquad (14)$$

$$\frac{u_0h_0}{l_0}\frac{\partial h}{\partial \tilde{t}} + \frac{u_0h_0}{l_0}\frac{\partial(\tilde{u}h)}{\partial \tilde{x}} + \frac{u_0h_0}{l_0}\frac{\partial(\tilde{v}h)}{\partial \eta} = 0$$
(15)

Введем безразмерные параметры: число Рейнольдса – Re, число Вебера – W, число Фруда – Fr, и отношение толщины пленки к характерной длине волны – ε :

$$\varepsilon = \frac{h_0}{l_0}, \qquad \mathbf{W} = \frac{\sigma}{\rho l_0 u_0^2}, \qquad \mathbf{Fr} = \frac{u_0^2}{g h_0}, \qquad \mathbf{Re} = \frac{\rho h_0 u_0}{\mu}$$

В итоге, система (14),(15) принимает вид:

$$\varepsilon \operatorname{Re}\left(\frac{\partial(uh)}{\partial t} + \frac{\partial(u^{2}h)}{\partial x} + \frac{\partial(uvh)}{\partial \eta}\right) = \varepsilon^{2} \operatorname{ReW} hh_{xxx} - \varepsilon \operatorname{Re} h \frac{\partial p_{0}}{\partial x} - \varepsilon^{2} \operatorname{Re} hi \int h_{k} k^{2} p(k) e^{ikx} dk + \frac{u_{\eta\eta}}{h} + \frac{\operatorname{Re}}{\operatorname{Fr}} h$$
(16)

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} + \frac{\partial (vh)}{\partial \eta} = 0 \tag{17}$$

с граничными условиями:

$$u(x, 0, t) = 0 (18)$$

$$v(x,0,t) = 0 (19)$$

$$\frac{\partial u}{\partial \eta}(x,1,t) = h \operatorname{Re}\tau_0(1+\varepsilon \int \hat{h}_k k\tau(k) e^{ikx} dk)$$
(20)

$$v(x, 1, t) = 0$$
 (21)

Выберем h_0 и u_0 так, чтобы безразмерная толщина пленки $\tilde{h} = 1$ и безразмерный расход пленки $\tilde{Q} = 1$ для безволнового течения. Тогда невозмущенный профиль скорости течения имеет вид:

$$u^{0} = \frac{\operatorname{Re}}{\operatorname{Fr}} \left(\eta - \frac{\eta^{2}}{2} \right) + \operatorname{Re}\tau_{0}\eta$$
(22)

А из условия $\tilde{Q} = 1$ следует:

$$Q^{0} = \int_{0}^{1} u^{0} d\eta = 1 \Longrightarrow \operatorname{Fr} = \frac{2\operatorname{Re}}{3(2 - \operatorname{Re}\tau_{0})}$$
(23)

Таким образом, характерная скорость и толщина пленки однозначно определены:

$$h_0 = \left(\frac{3\nu^2 \operatorname{Re}(2 - \operatorname{Re}\tau_0)}{2g}\right)^{1/3} \tag{24}$$

$$u_0 = \left(\frac{2\nu \text{Re}^2 g}{3(2 - \text{Re}\tau_0)}\right)^{1/3}$$
(25)

Для исследования линейной устойчивости профиля (22), рассмотрим возмущенное течение:

$$u = u^{0} + u_{1}e^{ikx - ikct}$$
$$v = v_{1}e^{ikx - ikct}$$
$$h = 1 + h_{1}e^{ikx - ikct}$$

Из системы (16)-(17) для линейных возмущений u_1, v_1 получим:

$$\varepsilon \operatorname{Re}\left(-ikcu_{1} - ikcu_{0}h_{1} + 2iku_{0}u_{1} + iku_{0}^{2}h_{1} + u_{0\eta}v_{1} + u_{0}v_{1\eta}\right)$$
$$= -ik^{3}\varepsilon^{2}\operatorname{ReW}h_{1} - \varepsilon\operatorname{Re}\chi h_{1} + u_{1\eta\eta} - u_{0\eta\eta}h_{1} + \frac{\operatorname{Re}}{\operatorname{Fr}}h_{1}$$
(26)

$$-ikc + iku_1 + iku_0h_1 + v_{1\eta} = 0 (27)$$

Из граничных условий (18)-(21) следует:

$$u_1(x,0,t) = 0 (28)$$

$$v_1(x,0,t) = 0 (29)$$

$$\frac{\partial u_1}{\partial \eta}(x, 1, t) = h_1 \operatorname{Re}\tau_0(1 + \varepsilon \tau(k)k).$$
(30)

$$v_1(x, 1, t) = 0 \tag{31}$$

Для определения линейного отклика касательного $\tau(k)$ и нормального p(k) напряжений на границе раздела фаз рассмотрим течение газа над волнистой поверхностью пленки жидкости. В работах [4], [5] приведены наиболее популярные из используемых для этой цели линейные модели турбулентного течения над волнистой стенкой.

Первая модель, основанная на переносе граничных условий на невозмущенный уровень (МПГУ), приводит к уравнению Орра-Зоммерфельда:

$$i \operatorname{Re}_{g} \left(U(v''_{g} - v_{g}) - v_{g} U'' \right) = v''_{g} - 2v''_{g} + v_{g},$$
(32)

где газовое число Рейнольдса Re_{g} определяется соотношением: $\operatorname{Re}_{g} = (\nu^* h_0)/(k\nu_g)$, здесь $\nu^* = \sqrt{\mathcal{T}_0/\rho_g}$. Решая данное дифференциальное уравнение, находим $\tau(k)$ и p(k).

Рис. 1. Зависимость вещественной (кривая 1) и мнимой (кривая 2) компоненты касательных напряжений по модели переноса граничных условий (МПГУ) от числа Рейнольдса

Рис. 2. Зависимость вещественной (кривая 1) и мнимой (кривая 2) компоненты касательных напряжений по модели Бенджамина (МБ) от числа Рейнольдса

Модель Бенджамина (МБ) для вычисления тензора напряжений газового потока, предложенная в работе [6], сводится к рассмотрению уравнения:

$$i\operatorname{Re}_{g}\left(U(v_{g}''-v_{g})-v_{g}U''\right)=v_{g}''''-2v_{g}''+v_{g}+(U''''-2U''')e^{-y}$$
(33)

Профиль скорости взят из работы [7] и выглядит следующим образом:

$$U(y) = 4.33 \ln(1 + 0.091y \text{Re}) - 0.915 \ln(1 - 0.092y \text{Re} + 0.0108y^2 \text{Re}^2) +$$

+5.59 arctan(0.116y Re - 0.492) + 2.56

Результаты расчетов касательных напряжений по этим моделям приведены на рис. 1,2.

Рис. 3. Зависимость мнимой компоненты ω от волнового числа k при Re=1.

Рис. 4. Зависимость мнимой компоненты ω от волнового числа k при Re=10.

Эти данные использовались для решения краевой задачи (26)-(27). В результате были получены зависимости c = c(k).

На рис. 3, 4 представлены графики мнимой части $\omega = ck$ в зависимости от безразмерного волнового числа для двух характерных значений числа Рейнольдса пленки. На этих рисунках показаны результаты для свободно стекающей пленки (кривые 1), для пленки с учетом только стационарного касательного напряжения со стороны газовой фазы (кривые 2), и результаты расчетов по моделям МПГУ (кривые 3) и МБ (кривые 4).

Для рис. 3 значение числа Рейнольдса пленки Re = 1, безразмерное трение $\tau_0 = 0.39$. Видно, что учет влияния стационарной составляющей трения газового потока стабилизирует пленку (см. кр. 1, 2), тогда как учет пульсаций касательного напряжения приводит к обратному эффекту (см. кр. 3, 4). Также можно заметить, что графики функций полученные с помощью модели переноса граничных условий и по модели Бенджамина не имеют значительного отличия.

Для рис. 4 число Рейнольдса пленки Re = 10, соответствующее безразмерное трение $\tau_0 = 0.19$ (подчеркнем, что величины размерного трения для рис. 3 и 4 одинаковы). В этом случае результаты качественно подобны. При этом с увеличением числа Рейнольдса пленки, данные, полученные по МПГУ и МБ, сближаются. Как видно из рис. 4, уже при Re = 10 они с графической точностью совпадают – кр. 3 и 4 сливаются.

Полученные результаты хорошо согласуются с результатами экспериментальной работы [8].

3. Заключение

Выведена новая система уравнений для моделирования динамики длинноволновых возмущений на поверхности тонкого слоя вязкой жидкости, стекающего по вертикальной плоскости и обдуваемого турбулентным потоком газа. Проведен анализ линейной устойчивости плоскопараллельного течения. Обнаружено, что при умеренных числах Рейнольдса жидкости линейные модели Бенджамина и переноса граничных условий на невозмущенный уровень для возмущенного течения газа дают качественно похожие результаты. При уменьшении числа Рейнольдса, отличия между результатами, полученными по разным моделями турбулентности, становятся более выраженными.

Список литературы

- [1] ГЕШЕВ П.И., ЕЗДИН Б.С. Расчет профиля скорости и формы волны на стекающей пленке жидкости // В кн.: Гидродинамика и тепломасообмен течений жидкости со свободной поверхностью. Новосибирск. 1985. С. 49–57.
- [2] ЛАНДАУ Л.Д., ЛИФШИЦ Е.М. Гидродинамика. М.: Наука, 1986.
- [3] АЛЕКСЕЕНКО С.В., АРХИПОВ Д.Г., ЦВЕЛОДУБ О.Ю. Дивергентная система уравнений для пленки жидкости, стекающей по вертикальной плоскости // Доклады РАН. 2011. Т. 436, № 1. С. 43-46.
- [4] ALEKSEENKO S.V., ARKHIPOV D.G., TSVELODUB O.YU. Modelling of the stresses produced by the turbulent gas flow over the wavy liquid film // Transport Phenomena with Moving Boundaries. 2007. Berlin. pp. 51–62.
- [5] DEMEKHIN E. A. Nonlinear waves in a liquid film entrained by a turbulent gas stream. Fluid Dynamics // 1981. Volume 16. Issue 2. pp. 188–193.
- [6] BENJAMIN T.B. Shearing flow over a wavy boundary // J. Fluid Mechanics. 1959. Volume 6. pp. 161-205.
- [7] ГЕШЕВ П.И. Линейная модель пристенного турбулентного переноса // Препринт №73-81. Институт теплофизики СО АН СССР. 1981.
- [8] ALEKSEENKO S. V., AKTERSHEV S. P., CHERDANTSEV A. V., KHARLAMOV S. M., MARKOVICH D. M. Primary instabilities of liquid film flow sheared by turbulent gas stream // International Journal of Multiphase Flow. 2009. Volume 35, pp. 617–627,