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Bounds for the error of the Gaussian approximation for the binomial distribution are
stated, depending from the probability of success and the number n of observations. As
a consequence, the upper bound for the absolute constant in the Berry–Esseen inequality
for identically distributed random variables, taking two values, is deduced which differs
from asymptotical one slightly more than 0.01.

The following idea is realized in the work. We can obtain sharp bounds for sufficiently
large n. The main purpose of the paper is to prove just these bounds. As to bounded
number of observations, computations with the help of the computer must be produced.
This part of investigations is developed by our pupils K.V. Mikhailov and A.S. Kondric.

Let X, X1, ..., Xn be a sequence of i.i.d. random variables with EX = 0, β3 = E|X|3 < ∞.
Denote b2 = EX2, Sn =

∑n
i=1 Xi, Φ(x) = 1√

2π

∫ x

−∞ e−t2/2dt.

A. Berry [1] and C.-G. Esseen [2] proved that

∆n := sup
x

|P(n−1/2Sn < bx) − Φ(x)| < C0
β3

b3
√

n
,

where C0 is an absolute constant.
The large amount of papers is devoted to the search of the optimal value of the constant C0

(see, e.g. [3–12]). Esseen [13] showed that C0 can not be less than CE =
√

10+3
6
√

2π
= 0.409732 . . . .

As to upper bounds for C0 the best results in this direction were obtained in the recent
papers by I.S. Tyurin [9, 10], C0 ≤ 0.4785, and V. Yu. Korolev, I.G. Shevtzova [11, 12],

C0 ≤ 0.4784. (1)

In reality, sharper result

∆n ≤ 0.33477
β3 + 0.429b3

b3
√

n
, (2)

is obtained in [12] from which (1) easily follows.
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In the present paper we give the bound for ∆n and C0 in the particular case when X takes
only two values. To formulate our results we introduce a lot of notations.

Thus, let P(X = a)= q, P(X = d)= p, where p + q =1, a< 0<d, EX =0. We assume for
the brevity that b2 = 1. Then

β3 =
p2 + q2

√
pq

, EX3 =
q − p√

pq
, d − a =

1√
pq

. (3)

Define the function E(p) by the equality

E(p) =
1

β3

√
2π

(
EX3

6
+

d − a

2

)
. (4)

Note that the right-hand side of (4) first appeared in the paper by Esseen [13]. It is easily seen,
using formulas (3), that

E(p) =
2 − p

3
√

2π [p2 + (1 − p)2]
.

Denote
σ = σ(p, n) =

√
npq,

ω3(p) = q − p, ω4(p) = |q3 + p3 − 3pq|,
ω5(p) = q4 − p4, ω6(p) = q5 + p5 + 15(pq)2.

Let

K1(p, n) =
ω3(p)

4σ
√

2π(n − 1)

(
1 +

1

4(n − 1)

)
+

ω4(p)

12σ2π

( n

n − 1

)2

+

+
ω5(p)

40σ3
√

2π

( n

n − 1

)5/2

+
ω6(p)

90σ4π

( n

n − 1

)3

.

Further, denote

ζ(p) =
(ω(p)

6

)2/3

, e(n, p) = exp
{ 1

24σ2/3ζ2(p)

}
, e5 = 0.0277905,

ω̃5(p) = p4 + q4 + 5!e5(pq)
3/2, Ak(n) =

( n

n − 2

)k/2 n − 1

n
,

V6(p)=ω2
3(p), V7(p)=ω3(p) ω4(p), V8(p)=

2 ω̃5(p) ω3(p)

5! 3!
+

ω2
4(p)

(4!)2
,

V9(p) = ω̃5(p) ω4(p), V10(p) =
26 · 3
(5!)2

ω̃2
5(p),

γ6 =
1

9
, γ7 =

5
√

2π

96
, γ8 = 24, γ9 =

7
√

2π

4! 16
, γ10 =

26 · 3
(5!)2

,

γ̃6 =
2

3
, γ̃7 =

7

8
, γ̃8 =

10

9
, γ̃9 =

11

8
, γ̃10 =

5

3
.
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Let

K2(p, n) =
1

πσ

5∑

j=1

γj+5 Aj+5(n) Vj+5(p)

σj

[
1 +

γ̃j+5 e(n, p) n

σ2 (n − 2)

]
.

Finally, put

K3(p, n) =
1

π

{
1

12σ2
+

( 1

36
+

µ

8

) 1

σ4
+

(eA1/6

36
+

µ

8

) 1

σ6
+

5µ eA2/6

24σ8
+

+
1

3
e−σ

√
A1+A1/6 + (π − 2) µ e−σ

√
A2+A2/6 +

1

4
e−σ

√
A3+A3/6 ln

(π4σ2

4A3

)
+

+ exp
{
− σ2/3

2ζ(p)

}[
2ζ(p)

σ2/3
+ eA3/6 1 + χ(p, n)

24 ζ(p) σ4/3

]}
,

where

A1 = 5.40466, A2 = 7.52058, A3 = 5.2335, µ =
3π2 − 16

π4
,

χ(p, n) =

{
2ζ(p)

σ2/3
if 0 < p < 0.085,

0 if 0.085 ≤ p ≤ 0.5.

Denote

R0(p, n) =

√
n

β3(p)

3∑

j=1

Kj(p, n).

Denote also the values ∆n and β3 for given p by ∆n(p) and β3(p) respectively.

Theorem 1. If
4

n
≤ p ≤ 0.5, n ≥ 200, (5)

then
√

n

β3(p)
∆n(p) ≤ E(p) + R0(p, n),

and for every fixed p (0 < p ≤ 0.5) the sequence R0(p, n) tends to 0 decreasing in
n ≥ max

{
200, 4

p

}
.

Above stated formulas for Ki(p, n), i = 1, 3, by which R0(p, n) is expressed, are very
complicated. Of course, we can estimate Ki(p, n) from above by simpler expressions, but doing
so we loose much in exactness.

Proving Theorem 1, we applied the smoothing method as in almost all papers devoted to
estimating a constant in the Berry–Esseen inequality. However, in difference with the tradi-
tional, after paper [4] by S. Zahl, smoothing by means of signed measures, we apply, with this
purpose, the uniform distribution on the interval

(
− 1

2
√

pq
, 1

2
√

pq

)
.

Denote p0 = 4−
√

10
2

= 0.418861... . One can show that E(p) increases for 0 < p < p0 and

decreases for p0 < p ≤ 0.5, i.e. p0 is the point of maximum of E(p), and E(p0) =
√

10+3
6
√

2π
≡ CE.
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By virtue of Theorem 1, for n ≥ 200 the problem is reduced to finding M ≡ max
p∈[0.02,0.5]

E(p, 200).

This is practically impossible to realize without using a computer in view of extreme compli-
cation of the function E(p, n). Two ways are applied for solving the problem, which give the
results, differing one from the other not more than by 8 · 10−5.

The first way is that computations of E(p, 200) are produced in eleven values of p only. The
function E(p, 200) is estimated above in each of ten intervals, formed by the selected points.
Monotonicity in these intervals of all 23 functions, defining E(p, n), is used here. As a result
we obtain the bound M < 0.421498, which is formulated below as Corollary.

Creation of a code for computing M using a lattice with the step 10−4 in [0.02, 0.5] is the
alternative way. The bound M < 0.421421 is obtained by this method.

Note that the advantage of the first way is the considerably lesser volume of computations.
Figure 1 illustrates behaviour of E(p, n) and E(p).
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Fig. 1. 1 – graph of E(p, 200), p∈ [0.02, 0.5]; 2 – graph of E(p, 800), p∈ [0.02, 0.5]; 3 – graph of E(p),
p∈ [0, 0.5]

Corollary. For n and p, satisfying (5),

sup
0.02≤p<0.5

√
n

β3(p)
∆n(p) < 0.4215. (6)

On the other hand, K.V. Mikhailov and A.S. Kondric found in [14] that

max
1≤n≤200

sup
0.02≤p≤0.5

√
n

β3(p)
∆n(p) < 0.4096. (7)

Now, let 0 < p < 0.02. In this case, it follows from bound (2) that

√
n

β3(p)
∆n(p) < 0.356. (8)
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Indeed, β3(p) decreases with increasing p. Therefore, for p < 0.02

∆n(p) <
β3(p)√

n

(
0.33477 + 0.14362β−1

3 (0.02)
)

< 0.3557
β3(p)√

n
.

Combining bounds (6) – (8) we obtain

Theorem 2. For every 0 < p ≤ 0.5

∆n(p) ≤ 0.4215
β3(p)√

n
. (9)

We see that the constant in the right–hand side of inequality (9) differs from CE approx-
imately by 0.0118. It gives grounds to expect that the least constant in the Berry–Esseen
inequality for i.i.d. random variables, taking two values, equals, in reality, CE.
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